lean2/hott/homotopy/cofiber.hlean

113 lines
4 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer
The Cofiber Type
-/
import hit.pushout function .susp types.unit
open eq pushout unit pointed is_trunc is_equiv susp unit equiv
definition cofiber {A B : Type} (f : A → B) := pushout f (λ (a : A), ⋆)
namespace cofiber
section
parameters {A B : Type} (f : A → B)
definition cod : B → cofiber f := inl
definition base : cofiber f := inr ⋆
parameter {f}
protected definition glue (a : A) : cofiber.cod f (f a) = cofiber.base f :=
pushout.glue a
protected definition rec {P : cofiber f → Type} (Pcod : Π (b : B), P (cod b)) (Pbase : P base)
(Pglue : Π (a : A), pathover P (Pcod (f a)) (glue a) Pbase) :
(Π y, P y) :=
begin
intro y, induction y, exact Pcod x, induction x, exact Pbase, exact Pglue x
end
protected definition rec_on {P : cofiber f → Type} (y : cofiber f)
(Pcod : Π (b : B), P (cod b)) (Pbase : P base)
(Pglue : Π (a : A), pathover P (Pcod (f a)) (glue a) Pbase) : P y :=
cofiber.rec Pcod Pbase Pglue y
protected theorem rec_glue {P : cofiber f → Type} (Pcod : Π (b : B), P (cod b)) (Pbase : P base)
(Pglue : Π (a : A), pathover P (Pcod (f a)) (glue a) Pbase) (a : A)
: apd (cofiber.rec Pcod Pbase Pglue) (cofiber.glue a) = Pglue a :=
!pushout.rec_glue
protected definition elim {P : Type} (Pcod : B → P) (Pbase : P)
(Pglue : Π (x : A), Pcod (f x) = Pbase) (y : cofiber f) : P :=
pushout.elim Pcod (λu, Pbase) Pglue y
protected definition elim_on {P : Type} (y : cofiber f) (Pcod : B → P) (Pbase : P)
(Pglue : Π (x : A), Pcod (f x) = Pbase) : P :=
cofiber.elim Pcod Pbase Pglue y
protected theorem elim_glue {P : Type} (Pcod : B → P) (Pbase : P)
(Pglue : Π (x : A), Pcod (f x) = Pbase) (a : A)
: ap (cofiber.elim Pcod Pbase Pglue) (cofiber.glue a) = Pglue a :=
!pushout.elim_glue
end
end cofiber
attribute cofiber.base cofiber.cod [constructor]
attribute cofiber.rec cofiber.elim [recursor 8] [unfold 8]
attribute cofiber.rec_on cofiber.elim_on [unfold 5]
-- pointed version
definition pcofiber [constructor] {A B : Type*} (f : A →* B) : Type* :=
pointed.MK (cofiber f) !cofiber.base
notation `` := pcofiber
namespace cofiber
variables {A B : Type*} (f : A →* B)
definition is_contr_cofiber_of_equiv [H : is_equiv f] : is_contr (cofiber f) :=
begin
fapply is_contr.mk, exact cofiber.base f,
intro a, induction a with b a,
{ exact !glue⁻¹ ⬝ ap inl (right_inv f b) },
{ reflexivity },
{ apply eq_pathover_constant_left_id_right, apply move_top_of_left,
refine _ ⬝pv natural_square_tr cofiber.glue (left_inv f a) ⬝vp !ap_constant,
refine ap02 inl _ ⬝ !ap_compose⁻¹, exact adj f a },
end
definition pcod [constructor] (f : A →* B) : B →* pcofiber f :=
pmap.mk (cofiber.cod f) (ap inl (respect_pt f)⁻¹ ⬝ cofiber.glue pt)
definition pcod_pcompose [constructor] (f : A →* B) : pcod f ∘* f ~* pconst A ( f) :=
begin
fapply phomotopy.mk,
{ intro a, exact cofiber.glue a },
{ exact !con_inv_cancel_left⁻¹ ⬝ idp ◾ (!ap_inv⁻¹ ◾ idp) }
end
definition pcofiber_punit (A : Type*) : pcofiber (pconst A punit) ≃* psusp A :=
begin
fapply pequiv_of_pmap,
{ fconstructor, intro x, induction x, exact north, exact south, exact merid x,
exact (merid pt)⁻¹ },
{ esimp, fapply adjointify,
{ intro s, induction s, exact inl ⋆, exact inr ⋆, apply glue a },
{ intro s, induction s, do 2 reflexivity, esimp,
apply eq_pathover, refine _ ⬝hp !ap_id⁻¹, apply hdeg_square,
refine !(ap_compose (pushout.elim _ _ _)) ⬝ _,
refine ap _ !elim_merid ⬝ _, apply elim_glue },
{ intro c, induction c with u, induction u, reflexivity,
reflexivity, esimp, apply eq_pathover, apply hdeg_square,
refine _ ⬝ !ap_id⁻¹, refine !(ap_compose (pushout.elim _ _ _)) ⬝ _,
refine ap02 _ !elim_glue ⬝ _, apply elim_merid }},
end
end cofiber