lean2/hott/algebra/precategory/functor.hlean

165 lines
6.3 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.functor
Authors: Floris van Doorn, Jakob von Raumer
-/
2014-12-12 04:14:53 +00:00
import .basic types.pi
2014-12-12 19:19:06 +00:00
open function category eq prod equiv is_equiv sigma sigma.ops is_trunc funext
open pi
2014-12-12 04:14:53 +00:00
structure functor (C D : Precategory) : Type :=
(to_fun_ob : C → D)
(to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b))
(respect_id : Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a))
(respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b),
to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)
2014-12-12 04:14:53 +00:00
namespace functor
infixl `⇒`:25 := functor
2014-12-12 04:14:53 +00:00
variables {C D E : Precategory}
attribute to_fun_ob [coercion]
attribute to_fun_hom [coercion]
2014-12-12 04:14:53 +00:00
-- The following lemmas will later be used to prove that the type of
-- precategories forms a precategory itself
protected definition compose [reducible] (G : functor D E) (F : functor C D) : functor C E :=
functor.mk
(λ x, G (F x))
(λ a b f, G (F f))
(λ a, calc
G (F (ID a)) = G (ID (F a)) : by rewrite respect_id
... = ID (G (F a)) : by rewrite respect_id)
(λ a b c g f, calc
G (F (g ∘ f)) = G (F g ∘ F f) : by rewrite respect_comp
... = G (F g) ∘ G (F f) : by rewrite respect_comp)
infixr `∘f`:60 := compose
protected definition id [reducible] {C : Precategory} : functor C C :=
mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp)
protected definition ID [reducible] (C : Precategory) : functor C C := id
definition functor_eq_mk'' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
(pF : F₁ = F₂) (pH : pF ▹ H₁ = H₂)
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
apD01111 functor.mk pF pH !is_hprop.elim !is_hprop.elim
definition functor_eq_mk' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
(pF : F₁ F₂) (pH : Π(a b : C) (f : hom a b), eq_of_homotopy pF ▹ (H₁ a b f) = H₂ a b f)
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
functor_eq_mk'' id₁ id₂ comp₁ comp₂ (eq_of_homotopy pF)
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf,
begin
apply concat, rotate_left 1, exact (pH c c' f),
apply concat, rotate_left 1,
exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c c') f),
apply (apD10' f),
apply concat, rotate_left 1,
exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c) c'),
apply (apD10' c'),
apply concat, rotate_left 1,
exact (pi_transport_constant (eq_of_homotopy pF) H₁ c),
apply idp
end))))
definition functor_eq_mk_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)}
{H₂ : Π(a b : C), hom a b → hom (F a) (F b)} (id₁ id₂ comp₁ comp₂)
(pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f)
: functor.mk F H₁ id₁ comp₁ = functor.mk F H₂ id₂ comp₂ :=
functor_eq_mk'' id₁ id₂ comp₁ comp₂ idp
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (pH c c'))))
definition functor_eq_mk {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ to_fun_ob F₂),
(Π(a b : C) (f : hom a b), transport (λF, hom (F a) (F b)) (eq_of_homotopy p) (F₁ f) = F₂ f)
→ F₁ = F₂ :=
functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'))
protected definition assoc {A B C D : Precategory} (H : functor C D) (G : functor B C) (F : functor A B) :
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
!functor_eq_mk_constant (λa b f, idp)
protected definition id_left (F : functor C D) : id ∘f F = F :=
functor.rec_on F (λF1 F2 F3 F4, !functor_eq_mk_constant (λa b f, idp))
protected definition id_right (F : functor C D) : F ∘f id = F :=
functor.rec_on F (λF1 F2 F3 F4, !functor_eq_mk_constant (λa b f, idp))
set_option apply.class_instance false
-- "functor C D" is equivalent to a certain sigma type
set_option unifier.max_steps 38500
protected definition sigma_char :
(Σ (to_fun_ob : C → D)
(to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b)),
(Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) ×
(Π {a b c : C} (g : hom b c) (f : hom a b),
to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)) ≃ (functor C D) :=
begin
fapply equiv.MK,
{intro S, fapply functor.mk,
exact (S.1), exact (S.2.1),
exact (pr₁ S.2.2), exact (pr₂ S.2.2)},
{intro F,
cases F with (d1, d2, d3, d4),
exact (sigma.mk d1 (sigma.mk d2 (pair d3 (@d4))))},
{intro F,
cases F,
apply idp},
{intro S,
cases S with (d1, S2),
cases S2 with (d2, P1),
cases P1,
apply idp},
end
2014-12-12 04:14:53 +00:00
protected definition is_hset_functor
[HD : is_hset D] : is_hset (functor C D) :=
begin
apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv,
apply sigma_char,
apply is_trunc_sigma, apply is_trunc_pi, intros, exact HD, intro F,
apply is_trunc_sigma, apply is_trunc_pi, intro a,
{apply is_trunc_pi, intro b,
apply is_trunc_pi, intro c, apply !homH},
intro H, apply is_trunc_prod,
{apply is_trunc_pi, intro a,
apply is_trunc_eq, apply is_trunc_succ, apply !homH},
{repeat (apply is_trunc_pi; intros),
apply is_trunc_eq, apply is_trunc_succ, apply !homH},
end
2014-12-12 04:14:53 +00:00
end functor
namespace category
2014-12-12 04:14:53 +00:00
open functor
--TODO: make this a structure
definition precat_strict_precat : precategory (Σ (C : Precategory), is_hset C) :=
precategory.mk (λ a b, functor a.1 b.1)
(λ a b, @functor.is_hset_functor a.1 b.1 b.2)
2014-12-12 04:14:53 +00:00
(λ a b c g f, functor.compose g f)
(λ a, functor.id)
(λ a b c d h g f, !functor.assoc)
(λ a b f, !functor.id_left)
(λ a b f, !functor.id_right)
definition Precat_of_strict_cats := precategory.Mk precat_strict_precat
2014-12-12 04:14:53 +00:00
namespace ops
abbreviation SPreCat := Precat_of_strict_cats
--attribute precat_strict_precat [instance]
2014-12-12 04:14:53 +00:00
end ops
end category