lean2/library/data/real/complete.lean

524 lines
16 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
At this point, we no longer proceed constructively: this file makes heavy use of decidability,
excluded middle, and Hilbert choice.
Here, we show that is complete.
-/
import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat
import logic.choice
open -[coercions] rat
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1
open -[coercions] nat
open eq.ops
open pnat
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
namespace s
theorem rat_approx_l1 {s : seq} (H : regular s) :
∀ n : +, ∃ q : , ∃ N : +, ∀ m : +, m ≥ N → abs (s m - q) ≤ n⁻¹ :=
begin
intro n,
existsi (s (2 * n)),
existsi 2 * n,
intro m Hm,
apply rat.le.trans,
apply H,
rewrite -(add_halves n),
apply rat.add_le_add_right,
apply inv_ge_of_le Hm
end
theorem rat_approx {s : seq} (H : regular s) :
∀ n : +, ∃ q : , s_le (s_abs (sadd s (sneg (const q)))) (const n⁻¹) :=
begin
intro m,
rewrite ↑s_le,
apply exists.elim (rat_approx_l1 H m),
intro q Hq,
apply exists.elim Hq,
intro N HN,
existsi q,
apply nonneg_of_bdd_within,
repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg
| assumption),
intro n,
existsi N,
intro p Hp,
rewrite ↑[sadd, sneg, s_abs, const],
apply rat.le.trans,
rotate 1,
apply rat.sub_le_sub_left,
apply HN,
apply pnat.le.trans,
apply Hp,
rewrite -*pnat.mul.assoc,
apply pnat.mul_le_mul_left,
rewrite [sub_self, -neg_zero],
apply neg_le_neg,
apply rat.le_of_lt,
apply inv_pos
end
definition r_abs (s : reg_seq) : reg_seq :=
reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s))
theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_abs s ≡ s_abs t :=
begin
rewrite [↑equiv at *],
intro n,
rewrite ↑s_abs,
apply rat.le.trans,
apply abs_abs_sub_abs_le_abs_sub,
apply Heq
end
theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) :=
abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
theorem r_rat_approx (s : reg_seq) :
∀ n : +, ∃ q : , r_le (r_abs (radd s (rneg (r_const q)))) (r_const n⁻¹) :=
rat_approx (reg_seq.is_reg s)
theorem const_bound {s : seq} (Hs : regular s) (n : +) :
s_le (s_abs (sadd s (sneg (const (s n))))) (const n⁻¹) :=
begin
rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const],
intro m,
apply iff.mp !rat.le_add_iff_neg_le_sub_left,
apply rat.le.trans,
apply Hs,
apply rat.add_le_add_right,
rewrite -*pnat.mul.assoc,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem abs_const (a : ) : const (abs a) ≡ s_abs (const a) :=
begin
rewrite [↑s_abs, ↑const],
apply equiv.refl
end
theorem r_abs_const (a : ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a
theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_abs s ≡ s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply Hs,
intro j,
rewrite ↑s_abs,
let Hz' := s_nonneg_of_ge_zero Hs Hz,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero],
apply rat.le_of_lt,
apply inv_pos,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn],
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply rat.neg_le_neg; apply Hz'),
rewrite *rat.neg_neg,
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite pnat.add_halves,
apply rat.le.refl
end
theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) : s_abs s ≡ sneg s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply reg_neg_reg Hs,
intro j,
rewrite [↑s_abs, ↑s_le at Hz],
have Hz' : nonneg (sneg s), begin
apply nonneg_of_nonneg_equiv,
rotate 3,
apply Hz,
rotate 2,
apply s_zero_add,
repeat (apply Hs | apply zero_is_reg | apply reg_neg_reg | apply reg_add_reg)
end,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn],
rewrite [↑nonneg at Hz', ↑sneg at Hz'],
apply rat.le.trans,
apply rat.add_le_add,
repeat apply (rat.le_of_neg_le_neg !Hz'),
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite pnat.add_halves,
apply rat.le.refl,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self,
abs_zero],
apply rat.le_of_lt,
apply inv_pos
end
theorem r_equiv_abs_of_ge_zero {s : reg_seq} (Hz : r_le r_zero s) : requiv (r_abs s) s :=
equiv_abs_of_ge_zero (reg_seq.is_reg s) Hz
theorem r_equiv_neg_abs_of_le_zero {s : reg_seq} (Hz : r_le s r_zero) : requiv (r_abs s) (-s) :=
equiv_neg_abs_of_le_zero (reg_seq.is_reg s) Hz
end s
namespace real
open [classes] s
theorem p_add_fractions (n : +) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ :=
assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial,
by rewrite[*inv_mul_eq_mul_inv,-*rat.right_distrib,T,rat.one_mul]
theorem rewrite_helper9 (a b c : ) : b - c = (b - a) - (c - a) :=
by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel]
theorem rewrite_helper10 (a b c d : ) : c - d = (c - a) + (a - b) + (b - d) :=
by rewrite[*add_sub,*sub_add_cancel]
noncomputable definition rep (x : ) : s.reg_seq := some (quot.exists_rep x)
definition re_abs (x : ) : :=
quot.lift_on x (λ a, quot.mk (s.r_abs a)) (take a b Hab, quot.sound (s.r_abs_well_defined Hab))
theorem r_abs_nonneg {x : } : zero ≤ x → re_abs x = x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_abs_of_ge_zero Ha))
theorem r_abs_nonpos {x : } : x ≤ zero → re_abs x = -x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha))
theorem abs_const' (a : ) : of_rat (rat.abs a) = re_abs (of_rat a) := quot.sound (s.r_abs_const a)
theorem re_abs_is_abs : re_abs = real.abs := funext
(begin
intro x,
apply eq.symm,
let Hor := decidable.em (zero ≤ x),
apply or.elim Hor,
intro Hor1,
rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1],
intro Hor2,
have Hor2' : x ≤ zero, from le_of_lt (lt_of_not_ge Hor2),
rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2']
end)
theorem abs_const (a : ) : of_rat (rat.abs a) = abs (of_rat a) :=
by rewrite -re_abs_is_abs -- ????
theorem rat_approx' (x : ) : ∀ n : +, ∃ q : , re_abs (x - of_rat q) ≤ of_rat n⁻¹ :=
quot.induction_on x (λ s n, s.r_rat_approx s n)
theorem rat_approx (x : ) : ∀ n : +, ∃ q : , abs (x - of_rat q) ≤ of_rat n⁻¹ :=
by rewrite -re_abs_is_abs; apply rat_approx'
noncomputable definition approx (x : ) (n : +) := some (rat_approx x n)
theorem approx_spec (x : ) (n : +) : abs (x - (of_rat (approx x n))) ≤ of_rat n⁻¹ :=
some_spec (rat_approx x n)
theorem approx_spec' (x : ) (n : +) : abs ((of_rat (approx x n)) - x) ≤ of_rat n⁻¹ :=
by rewrite abs_sub; apply approx_spec
notation `r_seq` := + →
noncomputable definition converges_to (X : r_seq) (a : ) (N : + → +) :=
∀ k : +, ∀ n : +, n ≥ N k → abs (X n - a) ≤ of_rat k⁻¹
noncomputable definition cauchy (X : r_seq) (M : + → +) :=
∀ k : +, ∀ m n : +, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ of_rat k⁻¹
theorem cauchy_of_converges_to {X : r_seq} {a : } {N : + → +} (Hc : converges_to X a N) :
cauchy X (λ k, N (2 * k)) :=
begin
intro k m n Hm Hn,
rewrite (rewrite_helper9 a),
apply le.trans,
apply abs_add_le_abs_add_abs,
apply le.trans,
apply add_le_add,
apply Hc,
apply Hm,
krewrite abs_neg,
apply Hc,
apply Hn,
xrewrite of_rat_add,
apply of_rat_le_of_rat_of_le,
rewrite pnat.add_halves,
apply rat.le.refl
end
definition Nb (M : + → +) := λ k, pnat.max (3 * k) (M (2 * k))
theorem Nb_spec_right (M : + → +) (k : +) : M (2 * k) ≤ Nb M k := !max_right
theorem Nb_spec_left (M : + → +) (k : +) : 3 * k ≤ Nb M k := !max_left
noncomputable definition lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : + → :=
λ k, approx (X (Nb M k)) (2 * k)
theorem lim_seq_reg_helper {X : r_seq} {M : + → +} (Hc : cauchy X M) {m n : +}
(Hmn : M (2 * n) ≤M (2 * m)) :
abs (of_rat (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
(X (Nb M n) - of_rat (lim_seq Hc n)) ≤ of_rat (m⁻¹ + n⁻¹) :=
begin
apply le.trans,
apply add_le_add_three,
apply approx_spec',
rotate 1,
apply approx_spec,
rotate 1,
apply Hc,
rotate 1,
apply Nb_spec_right,
rotate 1,
apply pnat.le.trans,
apply Hmn,
apply Nb_spec_right,
rewrite [*of_rat_add, rat.add.assoc, pnat.add_halves],
apply of_rat_le_of_rat_of_le,
apply rat.add_le_add_right,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem lim_seq_reg {X : r_seq} {M : + → +} (Hc : cauchy X M) : s.regular (lim_seq Hc) :=
begin
rewrite ↑s.regular,
intro m n,
apply le_of_rat_le_of_rat,
rewrite [abs_const, -of_rat_sub, -sub_eq_add_neg, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
apply real.le.trans,
apply abs_add_three,
let Hor := decidable.em (M (2 * m) ≥ M (2 * n)),
apply or.elim Hor,
intro Hor1,
apply lim_seq_reg_helper Hc Hor1,
intro Hor2,
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub, -- ???
rat.add.comm, add_comm_three],
apply lim_seq_reg_helper Hc Hor2'
end
theorem lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.s_le (s.s_abs (s.sadd (lim_seq Hc) (s.sneg (s.const (lim_seq Hc k))) )) (s.const k⁻¹) :=
begin
apply s.const_bound,
apply lim_seq_reg
end
noncomputable definition r_lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : s.reg_seq :=
s.reg_seq.mk (lim_seq Hc) (lim_seq_reg Hc)
theorem r_lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.r_le (s.r_abs (( s.radd (r_lim_seq Hc) (s.rneg (s.r_const ((s.reg_seq.sq (r_lim_seq Hc)) k)))))) (s.r_const (k)⁻¹) :=
lim_seq_spec Hc k
noncomputable definition lim {X : r_seq} {M : + → +} (Hc : cauchy X M) : :=
quot.mk (r_lim_seq Hc)
theorem re_lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
re_abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
r_lim_seq_spec Hc k
theorem lim_spec' {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
by rewrite -re_abs_is_abs; apply re_lim_spec
theorem lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((of_rat ((lim_seq Hc) k)) - (lim Hc)) ≤ of_rat (k)⁻¹ :=
by rewrite abs_sub; apply lim_spec'
theorem converges_of_cauchy {X : r_seq} {M : + → +} (Hc : cauchy X M) :
converges_to X (lim Hc) (Nb M) :=
begin
intro k n Hn,
rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq Hc n))),
apply le.trans,
apply abs_add_three,
apply le.trans,
apply add_le_add_three,
apply Hc,
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_right,
have HMk : M (2 * k) ≤ Nb M n, begin
apply pnat.le.trans,
apply Nb_spec_right,
apply pnat.le.trans,
apply Hn,
apply pnat.le.trans,
apply mul_le_mul_left 3,
apply Nb_spec_left
end,
apply HMk,
rewrite ↑lim_seq,
apply approx_spec,
apply lim_spec,
rewrite 2 of_rat_add,
apply of_rat_le_of_rat_of_le,
apply rat.le.trans,
apply rat.add_le_add_three,
apply rat.le.refl,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
apply inv_ge_of_le,
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
rewrite [-*pnat.mul.assoc, p_add_fractions],
apply rat.le.refl
end
--------------------------------------------------
-- archimedean property
theorem archimedean (x y : ) (Hx : x > 0) (Hy : y > 0) : ∃ n : , (of_rat (of_nat n)) * x ≥ y := sorry
--------------------------------------------------
-- supremum property
section supremum
open prod nat
local notation 2 := (1 : ) + 1
parameter X : → Prop
definition rpt {A : Type} (op : A → A) : → A → A
| rpt 0 := λ a, a
| rpt (succ k) := λ a, ((rpt k) (op a))
definition ub (x : ) := ∀ y : , X y → y ≤ x
definition bounded := ∃ x : , ub x
definition sup (x : ) := ub x ∧ ∀ y : , ub y → y ≤ x
parameter elt :
hypothesis inh : X elt
parameter bound :
hypothesis bdd : ub bound
parameter floor : → int
parameter ceil : → int
definition avg (a b : ) := a / 2 + b / 2
definition bisect (ab : × ) :=
if ub (avg (pr1 ab) (pr2 ab)) then
(pr1 ab, (avg (pr1 ab) (pr2 ab)))
else
(avg (pr1 ab) (pr2 ab), pr2 ab)
definition under : := of_int (floor (elt - 1))
theorem under_spec : ¬ ub under := sorry
definition over : := of_int (ceil (bound + 1)) -- b
theorem over_spec : ub over := sorry
definition under_seq := λ n : , pr1 (rpt bisect n (under, over)) -- A
definition over_seq := λ n : , pr2 (rpt bisect n (under, over)) -- B
definition avg_seq := λ n : , avg (over_seq n) (under_seq n) -- C
theorem over_0 : over_seq 0 = over := rfl
theorem under_0 : under_seq 0 = under := rfl
theorem under_succ (n : ) : under_seq (succ n) = (if ub (avg_seq n) then under_seq n else avg_seq n) := sorry
theorem over_succ (n : ) : over_seq (succ n) = (if ub (avg_seq n) then avg_seq n else over_seq n) := sorry
theorem rat.pow_zero (a : ) : rat.pow a 0 = 1 := sorry
theorem width (n : ) : over_seq n - under_seq n = (over - under) / (rat.pow 2 n) :=
nat.induction_on n
(by rewrite [over_0, under_0, rat.pow_zero, rat.div_one])
(begin
intro a Ha,
rewrite [over_succ, under_succ],
cases (decidable.em (ub (avg_seq a))),
rewrite [*if_pos a_1],
apply sorry,
rewrite [*if_neg a_1],
apply sorry
end)
theorem twos (y r : ) (H : 0 < r) : ∃ n : , y / (rat.pow 2 n) < r := sorry
theorem PA (n : ) : ¬ ub (under_seq n) :=
nat.induction_on n
(by rewrite under_0; apply under_spec)
(begin
intro a Ha,
rewrite under_succ,
cases (decidable.em (ub (avg_seq a))),
rewrite (if_pos a_1),
assumption,
rewrite (if_neg a_1),
assumption
end)
theorem PB (n : ) : ub (over_seq n) :=
nat.induction_on n
(by rewrite over_0; apply over_spec)
(begin
intro a Ha,
rewrite over_succ,
cases (decidable.em (ub (avg_seq a))),
rewrite (if_pos a_1),
assumption,
rewrite (if_neg a_1),
assumption
end)
theorem und_ov : under < over :=
let abv := exists_not_of_not_forall (under_spec) in
begin
let abv' := exists_not_of_not_forall (under_spec),
end
end supremum
end real