lean2/src/builtin/kernel.lean

355 lines
13 KiB
Text
Raw Normal View History

import macros
universe U ≥ 1
variable Bool : Type
-- The following builtin declarations can be removed as soon as Lean supports inductive datatypes and match expressions
builtin true : Bool
builtin false : Bool
builtin if {A : (Type U)} : Bool → A → A → A
definition TypeU := (Type U)
definition not (a : Bool) : Bool
:= a → false
notation 40 ¬ _ : not
definition or (a b : Bool) : Bool
:= ¬ a → b
infixr 30 || : or
infixr 30 \/ : or
infixr 30 : or
definition and (a b : Bool) : Bool
:= ¬ (a → ¬ b)
definition implies (a b : Bool) : Bool
:= a → b
infixr 35 && : and
infixr 35 /\ : and
infixr 35 ∧ : and
definition Exists (A : TypeU) (P : A → Bool) : Bool
:= ¬ (∀ x : A, ¬ (P x))
definition eq {A : TypeU} (a b : A) : Bool
:= a == b
infix 50 = : eq
definition neq {A : TypeU} (a b : A) : Bool
:= ¬ (a == b)
infix 50 ≠ : neq
axiom refl {A : TypeU} (a : A) : a == a
axiom subst {A : TypeU} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a == b) : P b
axiom iff::intro {a b : Bool} (H1 : a → b) (H2 : b → a) : a == b
axiom abst {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (H : ∀ x : A, f x == g x) : f == g
axiom abstpi {A : TypeU} {B C : A → TypeU} (H : ∀ x : A, B x == C x) : (∀ x : A, B x) == (∀ x : A, C x)
axiom eta {A : TypeU} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) == f
axiom case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a
-- Alias for subst where we can provide P explicitly, but keep A,a,b implicit
definition substp {A : TypeU} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a == b) : P b
:= subst H1 H2
theorem trivial : true
:= refl true
theorem em (a : Bool) : a ¬ a
:= case (λ x, x ¬ x) trivial trivial a
theorem false::elim (a : Bool) (H : false) : a
:= case (λ x, x) trivial H a
theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false
:= H2 H1
theorem eqmp {a b : Bool} (H1 : a == b) (H2 : a) : b
:= subst H2 H1
infixl 100 <| : eqmp
infixl 100 ◂ : eqmp
-- assume is a 'macro' that expands into a discharge
theorem imp::trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c
:= λ Ha, H2 (H1 Ha)
theorem imp::eq::trans {a b c : Bool} (H1 : a → b) (H2 : b == c) : a → c
:= λ Ha, H2 ◂ (H1 Ha)
theorem eq::imp::trans {a b c : Bool} (H1 : a == b) (H2 : b → c) : a → c
:= λ Ha, H2 (H1 ◂ Ha)
theorem not::not::eq (a : Bool) : (¬ ¬ a) == a
:= case (λ x, (¬ ¬ x) == x) trivial trivial a
theorem not::not::elim {a : Bool} (H : ¬ ¬ a) : a
:= (not::not::eq a) ◂ H
theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a
:= λ Ha, absurd (H1 Ha) H2
theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a
:= λ Hnb : ¬ b, mt H Hnb
theorem absurd::elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b
:= false::elim b (absurd H1 H2)
theorem not::imp::eliml {a b : Bool} (Hnab : ¬ (a → b)) : a
:= not::not::elim
(have ¬ ¬ a :
λ Hna : ¬ a, absurd (have a → b : λ Ha : a, absurd::elim b Ha Hna)
Hnab)
theorem not::imp::elimr {a b : Bool} (H : ¬ (a → b)) : ¬ b
:= λ Hb : b, absurd (have a → b : λ Ha : a, Hb)
(have ¬ (a → b) : H)
theorem resolve1 {a b : Bool} (H1 : a b) (H2 : ¬ a) : b
:= H1 H2
-- Remark: conjunction is defined as ¬ (a → ¬ b) in Lean
theorem and::intro {a b : Bool} (H1 : a) (H2 : b) : a ∧ b
:= λ H : a → ¬ b, absurd H2 (H H1)
theorem and::eliml {a b : Bool} (H : a ∧ b) : a
:= not::imp::eliml H
theorem and::elimr {a b : Bool} (H : a ∧ b) : b
:= not::not::elim (not::imp::elimr H)
-- Remark: disjunction is defined as ¬ a → b in Lean
theorem or::introl {a : Bool} (H : a) (b : Bool) : a b
:= λ H1 : ¬ a, absurd::elim b H H1
theorem or::intror {b : Bool} (a : Bool) (H : b) : a b
:= λ H1 : ¬ a, H
theorem or::elim {a b c : Bool} (H1 : a b) (H2 : a → c) (H3 : b → c) : c
:= not::not::elim
(λ H : ¬ c,
absurd (have c : H3 (have b : resolve1 H1 (have ¬ a : (mt (λ Ha : a, H2 Ha) H))))
H)
theorem refute {a : Bool} (H : ¬ a → false) : a
:= or::elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false::elim a (H H1))
theorem symm {A : TypeU} {a b : A} (H : a == b) : b == a
:= subst (refl a) H
theorem trans {A : TypeU} {a b c : A} (H1 : a == b) (H2 : b == c) : a == c
:= subst H1 H2
infixl 100 ⋈ : trans
theorem ne::symm {A : TypeU} {a b : A} (H : a ≠ b) : b ≠ a
:= λ H1 : b = a, H (symm H1)
theorem eq::ne::trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c
:= subst H2 (symm H1)
theorem ne::eq::trans {A : TypeU} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
:= subst H1 H2
theorem eqt::elim {a : Bool} (H : a == true) : a
:= (symm H) ◂ trivial
theorem eqt::intro {a : Bool} (H : a) : a == true
:= iff::intro (λ H1 : a, trivial)
(λ H2 : true, H)
theorem congr1 {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (a : A) (H : f == g) : f a == g a
:= substp (fun h : (∀ x : A, B x), f a == h a) (refl (f a)) H
-- Remark: we must use heterogeneous equality in the following theorem because the types of (f a) and (f b)
-- are not "definitionally equal" They are (B a) and (B b)
-- They are provably equal, we just have to apply Congr1
theorem congr2 {A : TypeU} {B : A → TypeU} {a b : A} (f : ∀ x : A, B x) (H : a == b) : f a == f b
:= substp (fun x : A, f a == f x) (refl (f a)) H
-- Remark: like the previous theorem we use heterogeneous equality We cannot use Trans theorem
-- because the types are not definitionally equal
theorem congr {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} {a b : A} (H1 : f == g) (H2 : a == b) : f a == g b
:= subst (congr2 f H2) (congr1 b H1)
-- Remark: the existential is defined as (¬ (forall x : A, ¬ P x))
theorem exists::elim {A : TypeU} {P : A → Bool} {B : Bool} (H1 : Exists A P) (H2 : ∀ (a : A) (H : P a), B) : B
:= refute (λ R : ¬ B,
absurd (λ a : A, mt (λ H : P a, H2 a H) R)
H1)
theorem exists::intro {A : TypeU} {P : A → Bool} (a : A) (H : P a) : Exists A P
:= λ H1 : (∀ x : A, ¬ P x),
absurd H (H1 a)
-- At this point, we have proved the theorems we need using the
-- definitions of forall, exists, and, or, =>, not We mark (some of)
-- them as opaque Opaque definitions improve performance, and
-- effectiveness of Lean's elaborator
theorem or::comm (a b : Bool) : (a b) == (b a)
:= iff::intro (λ H, or::elim H (λ H1, or::intror b H1) (λ H2, or::introl H2 a))
(λ H, or::elim H (λ H1, or::intror a H1) (λ H2, or::introl H2 b))
theorem or::assoc (a b c : Bool) : ((a b) c) == (a (b c))
:= iff::intro (λ H : (a b) c,
or::elim H (λ H1 : a b, or::elim H1 (λ Ha : a, or::introl Ha (b c)) (λ Hb : b, or::intror a (or::introl Hb c)))
(λ Hc : c, or::intror a (or::intror b Hc)))
(λ H : a (b c),
or::elim H (λ Ha : a, (or::introl (or::introl Ha b) c))
(λ H1 : b c, or::elim H1 (λ Hb : b, or::introl (or::intror a Hb) c)
(λ Hc : c, or::intror (a b) Hc)))
theorem or::id (a : Bool) : (a a) == a
:= iff::intro (λ H, or::elim H (λ H1, H1) (λ H2, H2))
(λ H, or::introl H a)
theorem or::falsel (a : Bool) : (a false) == a
:= iff::intro (λ H, or::elim H (λ H1, H1) (λ H2, false::elim a H2))
(λ H, or::introl H false)
theorem or::falser (a : Bool) : (false a) == a
:= (or::comm false a) ⋈ (or::falsel a)
theorem or::truel (a : Bool) : (true a) == true
:= eqt::intro (case (λ x : Bool, true x) trivial trivial a)
theorem or::truer (a : Bool) : (a true) == true
:= (or::comm a true) ⋈ (or::truel a)
theorem or::tauto (a : Bool) : (a ¬ a) == true
:= eqt::intro (em a)
theorem and::comm (a b : Bool) : (a ∧ b) == (b ∧ a)
:= iff::intro (λ H, and::intro (and::elimr H) (and::eliml H))
(λ H, and::intro (and::elimr H) (and::eliml H))
theorem and::id (a : Bool) : (a ∧ a) == a
:= iff::intro (λ H, and::eliml H)
(λ H, and::intro H H)
theorem and::assoc (a b c : Bool) : ((a ∧ b) ∧ c) == (a ∧ (b ∧ c))
:= iff::intro (λ H, and::intro (and::eliml (and::eliml H)) (and::intro (and::elimr (and::eliml H)) (and::elimr H)))
(λ H, and::intro (and::intro (and::eliml H) (and::eliml (and::elimr H))) (and::elimr (and::elimr H)))
theorem and::truer (a : Bool) : (a ∧ true) == a
:= iff::intro (λ H : a ∧ true, and::eliml H)
(λ H : a, and::intro H trivial)
theorem and::truel (a : Bool) : (true ∧ a) == a
:= trans (and::comm true a) (and::truer a)
theorem and::falsel (a : Bool) : (a ∧ false) == false
:= iff::intro (λ H, and::elimr H)
(λ H, false::elim (a ∧ false) H)
theorem and::falser (a : Bool) : (false ∧ a) == false
:= (and::comm false a) ⋈ (and::falsel a)
theorem and::absurd (a : Bool) : (a ∧ ¬ a) == false
:= iff::intro (λ H, absurd (and::eliml H) (and::elimr H))
(λ H, false::elim (a ∧ ¬ a) H)
theorem not::true : (¬ true) == false
:= trivial
theorem not::false : (¬ false) == true
:= trivial
theorem not::and (a b : Bool) : (¬ (a ∧ b)) == (¬ a ¬ b)
:= case (λ x, (¬ (x ∧ b)) == (¬ x ¬ b))
(case (λ y, (¬ (true ∧ y)) == (¬ true ¬ y)) trivial trivial b)
(case (λ y, (¬ (false ∧ y)) == (¬ false ¬ y)) trivial trivial b)
a
theorem not::and::elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ¬ b
:= (not::and a b) ◂ H
theorem not::or (a b : Bool) : (¬ (a b)) == (¬ a ∧ ¬ b)
:= case (λ x, (¬ (x b)) == (¬ x ∧ ¬ b))
(case (λ y, (¬ (true y)) == (¬ true ∧ ¬ y)) trivial trivial b)
(case (λ y, (¬ (false y)) == (¬ false ∧ ¬ y)) trivial trivial b)
a
theorem not::or::elim {a b : Bool} (H : ¬ (a b)) : ¬ a ∧ ¬ b
:= (not::or a b) ◂ H
theorem not::iff (a b : Bool) : (¬ (a == b)) == ((¬ a) == b)
:= case (λ x, (¬ (x == b)) == ((¬ x) == b))
(case (λ y, (¬ (true == y)) == ((¬ true) == y)) trivial trivial b)
(case (λ y, (¬ (false == y)) == ((¬ false) == y)) trivial trivial b)
a
theorem not::iff::elim {a b : Bool} (H : ¬ (a == b)) : (¬ a) == b
:= (not::iff a b) ◂ H
theorem not::implies (a b : Bool) : (¬ (a → b)) == (a ∧ ¬ b)
:= case (λ x, (¬ (x → b)) == (x ∧ ¬ b))
(case (λ y, (¬ (true → y)) == (true ∧ ¬ y)) trivial trivial b)
(case (λ y, (¬ (false → y)) == (false ∧ ¬ y)) trivial trivial b)
a
theorem not::implies::elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b
:= (not::implies a b) ◂ H
theorem not::congr {a b : Bool} (H : a == b) : (¬ a) == (¬ b)
:= congr2 not H
theorem eq::exists::intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x == Q x) : (∃ x : A, P x) == (∃ x : A, Q x)
:= congr2 (Exists A) (abst H)
theorem not::forall (A : (Type U)) (P : A → Bool) : (¬ (∀ x : A, P x)) == (∃ x : A, ¬ P x)
:= calc (¬ ∀ x : A, P x) = (¬ ∀ x : A, ¬ ¬ P x) : not::congr (abstpi (λ x : A, symm (not::not::eq (P x))))
... = (∃ x : A, ¬ P x) : refl (∃ x : A, ¬ P x)
theorem not::forall::elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x
:= (not::forall A P) ◂ H
theorem not::exists (A : (Type U)) (P : A → Bool) : (¬ ∃ x : A, P x) == (∀ x : A, ¬ P x)
:= calc (¬ ∃ x : A, P x) = (¬ ¬ ∀ x : A, ¬ P x) : refl (¬ ∃ x : A, P x)
... = (∀ x : A, ¬ P x) : not::not::eq (∀ x : A, ¬ P x)
theorem not::exists::elim {A : (Type U)} {P : A → Bool} (H : ¬ ∃ x : A, P x) : ∀ x : A, ¬ P x
:= (not::exists A P) ◂ H
theorem exists::unfold1 {A : TypeU} {P : A → Bool} (a : A) (H : ∃ x : A, P x) : P a (∃ x : A, x ≠ a ∧ P x)
:= exists::elim H
(λ (w : A) (H1 : P w),
or::elim (em (w = a))
(λ Heq : w = a, or::introl (subst H1 Heq) (∃ x : A, x ≠ a ∧ P x))
(λ Hne : w ≠ a, or::intror (P a) (exists::intro w (and::intro Hne H1))))
theorem exists::unfold2 {A : TypeU} {P : A → Bool} (a : A) (H : P a (∃ x : A, x ≠ a ∧ P x)) : ∃ x : A, P x
:= or::elim H
(λ H1 : P a, exists::intro a H1)
(λ H2 : (∃ x : A, x ≠ a ∧ P x),
exists::elim H2
(λ (w : A) (Hw : w ≠ a ∧ P w),
exists::intro w (and::elimr Hw)))
theorem exists::unfold {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) = (P a (∃ x : A, x ≠ a ∧ P x))
:= iff::intro (λ H : (∃ x : A, P x), exists::unfold1 a H)
(λ H : (P a (∃ x : A, x ≠ a ∧ P x)), exists::unfold2 a H)
set::opaque exists true
set::opaque not true
set::opaque or true
set::opaque and true