lean2/library/data/finset/basic.lean

644 lines
25 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura, Jeremy Avigad
Finite sets.
-/
import data.fintype.basic data.nat data.list.perm data.subtype algebra.binary
open nat quot list subtype binary function eq.ops
open [declarations] perm
definition nodup_list (A : Type) := {l : list A | nodup l}
variable {A : Type}
definition to_nodup_list_of_nodup {l : list A} (n : nodup l) : nodup_list A :=
tag l n
definition to_nodup_list [h : decidable_eq A] (l : list A) : nodup_list A :=
@to_nodup_list_of_nodup A (erase_dup l) (nodup_erase_dup l)
private definition eqv (l₁ l₂ : nodup_list A) :=
perm (elt_of l₁) (elt_of l₂)
local infix ~ := eqv
private definition eqv.refl (l : nodup_list A) : l ~ l :=
!perm.refl
private definition eqv.symm {l₁ l₂ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₁ :=
assume p, perm.symm p
private definition eqv.trans {l₁ l₂ l₃ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ :=
assume p₁ p₂, perm.trans p₁ p₂
definition finset.nodup_list_setoid [instance] (A : Type) : setoid (nodup_list A) :=
setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A))
definition finset (A : Type) : Type :=
quot (finset.nodup_list_setoid A)
namespace finset
definition to_finset_of_nodup (l : list A) (n : nodup l) : finset A :=
⟦to_nodup_list_of_nodup n⟧
definition to_finset [h : decidable_eq A] (l : list A) : finset A :=
⟦to_nodup_list l⟧
lemma to_finset_eq_of_nodup [h : decidable_eq A] {l : list A} (n : nodup l) :
to_finset_of_nodup l n = to_finset l :=
assert P : to_nodup_list_of_nodup n = to_nodup_list l, from
begin
rewrite [↑to_nodup_list, ↑to_nodup_list_of_nodup],
congruence,
rewrite [erase_dup_eq_of_nodup n]
end,
quot.sound (eq.subst P !setoid.refl)
definition has_decidable_eq [instance] [h : decidable_eq A] : decidable_eq (finset A) :=
λ s₁ s₂, quot.rec_on_subsingleton₂ s₁ s₂
(λ l₁ l₂,
match decidable_perm (elt_of l₁) (elt_of l₂) with
| decidable.inl e := decidable.inl (quot.sound e)
| decidable.inr n := decidable.inr (λ e : ⟦l₁⟧ = ⟦l₂⟧, absurd (quot.exact e) n)
end)
definition mem (a : A) (s : finset A) : Prop :=
quot.lift_on s (λ l, a ∈ elt_of l)
(λ l₁ l₂ (e : l₁ ~ l₂), propext (iff.intro
(λ ainl₁, mem_perm e ainl₁)
(λ ainl₂, mem_perm (perm.symm e) ainl₂)))
infix `∈` := mem
notation a ∉ b := ¬ mem a b
theorem mem_of_mem_list {a : A} {l : nodup_list A} : a ∈ elt_of l → a ∈ ⟦l⟧ :=
λ ainl, ainl
theorem mem_list_of_mem {a : A} {l : nodup_list A} : a ∈ ⟦l⟧ → a ∈ elt_of l :=
λ ainl, ainl
/- singleton -/
definition singleton (a : A) : finset A :=
to_finset_of_nodup [a] !nodup_singleton
theorem mem_singleton [rewrite] (a : A) : a ∈ singleton a :=
mem_of_mem_list !mem_cons
theorem eq_of_mem_singleton {x a : A} : x ∈ singleton a → x = a :=
list.mem_singleton
theorem mem_singleton_eq (x a : A) : (x ∈ singleton a) = (x = a) :=
propext (iff.intro eq_of_mem_singleton (assume H, eq.subst H !mem_singleton))
lemma eq_of_singleton_eq {a b : A} : singleton a = singleton b → a = b :=
assume Pseq, eq_of_mem_singleton (Pseq ▸ mem_singleton a)
definition decidable_mem [instance] [h : decidable_eq A] : ∀ (a : A) (s : finset A), decidable (a ∈ s) :=
λ a s, quot.rec_on_subsingleton s
(λ l, match list.decidable_mem a (elt_of l) with
| decidable.inl p := decidable.inl (mem_of_mem_list p)
| decidable.inr n := decidable.inr (λ p, absurd (mem_list_of_mem p) n)
end)
theorem mem_to_finset [h : decidable_eq A] {a : A} {l : list A} : a ∈ l → a ∈ to_finset l :=
λ ainl, mem_erase_dup ainl
theorem mem_to_finset_of_nodup {a : A} {l : list A} (n : nodup l) : a ∈ l → a ∈ to_finset_of_nodup l n :=
λ ainl, ainl
/- extensionality -/
theorem ext {s₁ s₂ : finset A} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ e, quot.sound (perm_ext (has_property l₁) (has_property l₂) e))
/- empty -/
definition empty : finset A :=
to_finset_of_nodup [] nodup_nil
notation `∅` := !empty
theorem not_mem_empty [rewrite] (a : A) : a ∉ ∅ :=
λ aine : a ∈ ∅, aine
theorem mem_empty_iff [rewrite] (x : A) : x ∈ ∅ ↔ false :=
iff.mpr !iff_false_iff_not !not_mem_empty
theorem mem_empty_eq (x : A) : x ∈ ∅ = false :=
propext !mem_empty_iff
theorem eq_empty_of_forall_not_mem {s : finset A} (H : ∀x, ¬ x ∈ s) : s = ∅ :=
ext (take x, iff_false_intro (H x))
/- universe -/
definition univ [h : fintype A] : finset A :=
to_finset_of_nodup (@fintype.elems A h) (@fintype.unique A h)
theorem mem_univ [h : fintype A] (x : A) : x ∈ univ :=
fintype.complete x
theorem mem_univ_eq [h : fintype A] (x : A) : x ∈ univ = true := propext (iff_true_intro !mem_univ)
/- card -/
definition card (s : finset A) : nat :=
quot.lift_on s
(λ l, length (elt_of l))
(λ l₁ l₂ p, length_eq_length_of_perm p)
theorem card_empty : card (@empty A) = 0 :=
rfl
theorem card_singleton (a : A) : card (singleton a) = 1 :=
rfl
/- insert -/
section insert
variable [h : decidable_eq A]
include h
definition insert (a : A) (s : finset A) : finset A :=
quot.lift_on s
(λ l, to_finset_of_nodup (insert a (elt_of l)) (nodup_insert a (has_property l)))
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p))
-- set builder notation
notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a
-- notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a
theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s :=
quot.induction_on s
(λ l : nodup_list A, mem_to_finset_of_nodup _ !list.mem_insert)
theorem mem_insert_of_mem {a : A} {s : finset A} (b : A) : a ∈ s → a ∈ insert b s :=
quot.induction_on s
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), mem_to_finset_of_nodup _ (list.mem_insert_of_mem _ ainl))
theorem eq_or_mem_of_mem_insert {x a : A} {s : finset A} : x ∈ insert a s → x = a x ∈ s :=
quot.induction_on s (λ l : nodup_list A, λ H, list.eq_or_mem_of_mem_insert H)
theorem mem_of_mem_insert_of_ne {x a : A} {s : finset A} : x ∈ insert a s → x ≠ a → x ∈ s :=
λ xin xne, or.elim (eq_or_mem_of_mem_insert xin) (by contradiction) id
theorem mem_insert_eq (x a : A) (s : finset A) : x ∈ insert a s = (x = a x ∈ s) :=
propext (iff.intro
(!eq_or_mem_of_mem_insert)
(assume H, or.elim H
(assume H' : x = a, eq.subst (eq.symm H') !mem_insert)
(assume H' : x ∈ s, !mem_insert_of_mem H')))
theorem insert_empty_eq (a : A) : '{a} = singleton a := rfl
theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s :=
ext
take x,
begin
rewrite [!mem_insert_eq],
show x = a x ∈ s ↔ x ∈ s, from
iff.intro
(assume H1, or.elim H1
(assume H2 : x = a, eq.subst (eq.symm H2) H)
(assume H2, H2))
(assume H1, or.inr H1)
end
theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s :=
quot.induction_on s
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), list.length_insert_of_mem ainl)
theorem card_insert_of_not_mem {a : A} {s : finset A} : a ∉ s → card (insert a s) = card s + 1 :=
quot.induction_on s
(λ (l : nodup_list A) (nainl : a ∉ ⟦l⟧), list.length_insert_of_not_mem nainl)
theorem card_insert_le (a : A) (s : finset A) :
card (insert a s) ≤ card s + 1 :=
decidable.by_cases
(assume H : a ∈ s, by rewrite [card_insert_of_mem H]; apply le_succ)
(assume H : a ∉ s, by rewrite [card_insert_of_not_mem H])
lemma ne_empty_of_card_eq_succ {s : finset A} {n : nat} : card s = succ n → s ≠ ∅ :=
by intros; substvars; contradiction
protected theorem induction [recursor 6] {P : finset A → Prop}
(H1 : P empty)
(H2 : ∀ ⦃a : A⦄, ∀{s : finset A}, a ∉ s → P s → P (insert a s)) :
∀s, P s :=
take s,
quot.induction_on s
(take u,
subtype.destruct u
(take l,
list.induction_on l
(assume nodup_l, H1)
(take a l',
assume IH nodup_al',
have anl' : a ∉ l', from not_mem_of_nodup_cons nodup_al',
assert H3 : list.insert a l' = a :: l', from insert_eq_of_not_mem anl',
assert nodup_l' : nodup l', from nodup_of_nodup_cons nodup_al',
assert P_l' : P (quot.mk (subtype.tag l' nodup_l')), from IH nodup_l',
assert H4 : P (insert a (quot.mk (subtype.tag l' nodup_l'))), from H2 anl' P_l',
begin
revert nodup_al',
rewrite [-H3],
intros,
apply H4
end)))
protected theorem induction_on {P : finset A → Prop} (s : finset A)
(H1 : P empty)
(H2 : ∀ ⦃a : A⦄, ∀ {s : finset A}, a ∉ s → P s → P (insert a s)) :
P s :=
finset.induction H1 H2 s
theorem exists_of_not_empty {s : finset A} : s ≠ ∅ → ∃ a : A, a ∈ s :=
begin
induction s with a s nin ih,
{intro h, exact absurd rfl h},
{intro h, existsi a, apply mem_insert}
end
theorem eq_empty_of_card_eq_zero {s : finset A} (H : card s = 0) : s = ∅ :=
begin
induction s with a s' H1 IH,
{ reflexivity },
{ rewrite (card_insert_of_not_mem H1) at H, apply nat.no_confusion H}
end
end insert
/- erase -/
section erase
variable [h : decidable_eq A]
include h
definition erase (a : A) (s : finset A) : finset A :=
quot.lift_on s
(λ l, to_finset_of_nodup (erase a (elt_of l)) (nodup_erase_of_nodup a (has_property l)))
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (erase_perm_erase_of_perm a p))
theorem mem_erase (a : A) (s : finset A) : a ∉ erase a s :=
quot.induction_on s
(λ l, list.mem_erase_of_nodup _ (has_property l))
theorem card_erase_of_mem {a : A} {s : finset A} : a ∈ s → card (erase a s) = pred (card s) :=
quot.induction_on s (λ l ainl, list.length_erase_of_mem ainl)
theorem card_erase_of_not_mem {a : A} {s : finset A} : a ∉ s → card (erase a s) = card s :=
quot.induction_on s (λ l nainl, list.length_erase_of_not_mem nainl)
theorem erase_empty (a : A) : erase a ∅ = ∅ :=
rfl
theorem ne_of_mem_erase {a b : A} {s : finset A} : b ∈ erase a s → b ≠ a :=
by intro h beqa; subst b; exact absurd h !mem_erase
theorem mem_of_mem_erase {a b : A} {s : finset A} : b ∈ erase a s → b ∈ s :=
quot.induction_on s (λ l bin, mem_of_mem_erase bin)
theorem mem_erase_of_ne_of_mem {a b : A} {s : finset A} : a ≠ b → a ∈ s → a ∈ erase b s :=
quot.induction_on s (λ l n ain, list.mem_erase_of_ne_of_mem n ain)
open decidable
theorem erase_insert (a : A) (s : finset A) : a ∉ s → erase a (insert a s) = s :=
λ anins, finset.ext (λ b, by_cases
(λ beqa : b = a, iff.intro
(λ bin, by subst b; exact absurd bin !mem_erase)
(λ bin, by subst b; contradiction))
(λ bnea : b ≠ a, iff.intro
(λ bin,
assert bin' : b ∈ insert a s, from mem_of_mem_erase bin,
mem_of_mem_insert_of_ne bin' bnea)
(λ bin,
have bin' : b ∈ insert a s, from mem_insert_of_mem _ bin,
mem_erase_of_ne_of_mem bnea bin')))
theorem insert_erase {a : A} {s : finset A} : a ∈ s → insert a (erase a s) = s :=
λ ains, finset.ext (λ b, by_cases
(λ beqa : b = a, iff.intro
(λ bin, by subst b; assumption)
(λ bin, by subst b; apply mem_insert))
(λ bnea : b ≠ a, iff.intro
(λ bin, mem_of_mem_erase (mem_of_mem_insert_of_ne bin bnea))
(λ bin, mem_insert_of_mem _ (mem_erase_of_ne_of_mem bnea bin))))
end erase
/- union -/
section union
variable [h : decidable_eq A]
include h
definition union (s₁ s₂ : finset A) : finset A :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂,
to_finset_of_nodup (list.union (elt_of l₁) (elt_of l₂))
(nodup_union_of_nodup_of_nodup (has_property l₁) (has_property l₂)))
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_union p₁ p₂))
notation s₁ s₂ := union s₁ s₂
theorem mem_union_left {a : A} {s₁ : finset A} (s₂ : finset A) : a ∈ s₁ → a ∈ s₁ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁, list.mem_union_left _ ainl₁)
theorem mem_union_l {a : A} {s₁ : finset A} {s₂ : finset A} : a ∈ s₁ → a ∈ s₁ s₂ :=
mem_union_left s₂
theorem mem_union_right {a : A} {s₂ : finset A} (s₁ : finset A) : a ∈ s₂ → a ∈ s₁ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₂, list.mem_union_right _ ainl₂)
theorem mem_union_r {a : A} {s₂ : finset A} {s₁ : finset A} : a ∈ s₂ → a ∈ s₁ s₂ :=
mem_union_right s₁
theorem mem_or_mem_of_mem_union {a : A} {s₁ s₂ : finset A} : a ∈ s₁ s₂ → a ∈ s₁ a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_or_mem_of_mem_union ainl₁l₂)
theorem mem_union_iff (a : A) (s₁ s₂ : finset A) : a ∈ s₁ s₂ ↔ a ∈ s₁ a ∈ s₂ :=
iff.intro
(λ h, mem_or_mem_of_mem_union h)
(λ d, or.elim d
(λ i, mem_union_left _ i)
(λ i, mem_union_right _ i))
theorem mem_union_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ s₂) = (a ∈ s₁ a ∈ s₂) :=
propext !mem_union_iff
theorem union.comm (s₁ s₂ : finset A) : s₁ s₂ = s₂ s₁ :=
ext (λ a, by rewrite [*mem_union_eq]; exact or.comm)
theorem union.assoc (s₁ s₂ s₃ : finset A) : (s₁ s₂) s₃ = s₁ (s₂ s₃) :=
ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc)
theorem union_self (s : finset A) : s s = s :=
ext (λ a, iff.intro
(λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i))
(λ i, mem_union_left _ i))
theorem union_empty (s : finset A) : s ∅ = s :=
ext (λ a, iff.intro
(λ ain : a ∈ s ∅, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, absurd i !not_mem_empty))
(λ i : a ∈ s, mem_union_left _ i))
theorem empty_union (s : finset A) : ∅ s = s :=
calc ∅ s = s ∅ : union.comm
... = s : union_empty
theorem insert_eq (a : A) (s : finset A) : insert a s = singleton a s :=
ext (take x,
calc
x ∈ insert a s ↔ x ∈ insert a s : iff.refl
... = (x = a x ∈ s) : mem_insert_eq
... = (x ∈ singleton a x ∈ s) : mem_singleton_eq
... = (x ∈ '{a} s) : mem_union_eq)
theorem insert_union (a : A) (s t : finset A) : insert a (s t) = insert a s t :=
by rewrite [*insert_eq, union.assoc]
end union
/- inter -/
section inter
variable [h : decidable_eq A]
include h
definition inter (s₁ s₂ : finset A) : finset A :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂,
to_finset_of_nodup (list.inter (elt_of l₁) (elt_of l₂))
(nodup_inter_of_nodup _ (has_property l₁)))
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_inter p₁ p₂))
notation s₁ ∩ s₂ := inter s₁ s₂
theorem mem_of_mem_inter_left {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₁ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_inter_left ainl₁l₂)
theorem mem_of_mem_inter_right {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_inter_right ainl₁l₂)
theorem mem_inter {a : A} {s₁ s₂ : finset A} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁ ainl₂, list.mem_inter_of_mem_of_mem ainl₁ ainl₂)
theorem mem_inter_iff (a : A) (s₁ s₂ : finset A) : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ :=
iff.intro
(λ h, and.intro (mem_of_mem_inter_left h) (mem_of_mem_inter_right h))
(λ h, mem_inter (and.elim_left h) (and.elim_right h))
theorem mem_inter_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) :=
propext !mem_inter_iff
theorem inter.comm (s₁ s₂ : finset A) : s₁ ∩ s₂ = s₂ ∩ s₁ :=
ext (λ a, by rewrite [*mem_inter_eq]; exact and.comm)
theorem inter.assoc (s₁ s₂ s₃ : finset A) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) :=
ext (λ a, by rewrite [*mem_inter_eq]; exact and.assoc)
theorem inter_self (s : finset A) : s ∩ s = s :=
ext (λ a, iff.intro
(λ h, mem_of_mem_inter_right h)
(λ h, mem_inter h h))
theorem inter_empty (s : finset A) : s ∩ ∅ = ∅ :=
ext (λ a, iff.intro
(λ h : a ∈ s ∩ ∅, absurd (mem_of_mem_inter_right h) !not_mem_empty)
(λ h : a ∈ ∅, absurd h !not_mem_empty))
theorem empty_inter (s : finset A) : ∅ ∩ s = ∅ :=
calc ∅ ∩ s = s ∩ ∅ : inter.comm
... = ∅ : inter_empty
theorem singleton_inter_of_mem {a : A} {s : finset A} (H : a ∈ s) :
singleton a ∩ s = singleton a :=
ext (take x,
begin
rewrite [mem_inter_eq, !mem_singleton_eq],
exact iff.intro
(assume H1 : x = a ∧ x ∈ s, and.left H1)
(assume H1 : x = a, and.intro H1 (eq.subst (eq.symm H1) H))
end)
theorem singleton_inter_of_not_mem {a : A} {s : finset A} (H : a ∉ s) :
singleton a ∩ s = ∅ :=
ext (take x,
begin
rewrite [mem_inter_eq, !mem_singleton_eq, mem_empty_eq],
exact iff.intro
(assume H1 : x = a ∧ x ∈ s, H (eq.subst (and.left H1) (and.right H1)))
(false.elim)
end)
end inter
/- distributivity laws -/
section inter
variable [h : decidable_eq A]
include h
theorem inter.distrib_left (s t u : finset A) : s ∩ (t u) = (s ∩ t) (s ∩ u) :=
ext (take x, by rewrite [mem_inter_eq, *mem_union_eq, *mem_inter_eq]; apply and.distrib_left)
theorem inter.distrib_right (s t u : finset A) : (s t) ∩ u = (s ∩ u) (t ∩ u) :=
ext (take x, by rewrite [mem_inter_eq, *mem_union_eq, *mem_inter_eq]; apply and.distrib_right)
theorem union.distrib_left (s t u : finset A) : s (t ∩ u) = (s t) ∩ (s u) :=
ext (take x, by rewrite [mem_union_eq, *mem_inter_eq, *mem_union_eq]; apply or.distrib_left)
theorem union.distrib_right (s t u : finset A) : (s ∩ t) u = (s u) ∩ (t u) :=
ext (take x, by rewrite [mem_union_eq, *mem_inter_eq, *mem_union_eq]; apply or.distrib_right)
end inter
/- disjoint -/
-- Mainly for internal use; library will use s₁ ∩ s₂ = ∅. Note that it does not require decidable equality.
definition disjoint (s₁ s₂ : finset A) : Prop :=
quot.lift_on₂ s₁ s₂ (λ l₁ l₂, disjoint (elt_of l₁) (elt_of l₂))
(λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro
(λ d₁ a (ainw₁ : a ∈ elt_of w₁),
have ainv₁ : a ∈ elt_of v₁, from mem_perm (perm.symm p₁) ainw₁,
have nainv₂ : a ∉ elt_of v₂, from disjoint_left d₁ ainv₁,
not_mem_perm p₂ nainv₂)
(λ d₂ a (ainv₁ : a ∈ elt_of v₁),
have ainw₁ : a ∈ elt_of w₁, from mem_perm p₁ ainv₁,
have nainw₂ : a ∉ elt_of w₂, from disjoint_left d₂ ainw₁,
not_mem_perm (perm.symm p₂) nainw₂)))
theorem disjoint.elim {s₁ s₂ : finset A} {x : A} :
disjoint s₁ s₂ → x ∈ s₁ → x ∈ s₂ → false :=
quot.induction_on₂ s₁ s₂ (take u₁ u₂, assume H H1 H2, H x H1 H2)
theorem disjoint.intro {s₁ s₂ : finset A} : (∀{x : A}, x ∈ s₁ → x ∈ s₂ → false) → disjoint s₁ s₂ :=
quot.induction_on₂ s₁ s₂ (take u₁ u₂, assume H, H)
theorem inter_eq_empty_of_disjoint [h : decidable_eq A] {s₁ s₂ : finset A} (H : disjoint s₁ s₂) : s₁ ∩ s₂ = ∅ :=
ext (take x, iff_false_intro (assume H1,
disjoint.elim H (mem_of_mem_inter_left H1) (mem_of_mem_inter_right H1)))
theorem disjoint_of_inter_eq_empty [h : decidable_eq A] {s₁ s₂ : finset A} (H : s₁ ∩ s₂ = ∅) : disjoint s₁ s₂ :=
disjoint.intro (take x H1 H2,
have H3 : x ∈ s₁ ∩ s₂, from mem_inter H1 H2,
!not_mem_empty (eq.subst H H3))
theorem disjoint.comm {s₁ s₂ : finset A} : disjoint s₁ s₂ → disjoint s₂ s₁ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ d, list.disjoint.comm d)
theorem inter_eq_empty [h : decidable_eq A] {s₁ s₂ : finset A}
(H : ∀x : A, x ∈ s₁ → x ∈ s₂ → false) : s₁ ∩ s₂ = ∅ :=
inter_eq_empty_of_disjoint (disjoint.intro H)
/- subset -/
definition subset (s₁ s₂ : finset A) : Prop :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂, sublist (elt_of l₁) (elt_of l₂))
(λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro
(λ s₁ a i, mem_perm p₂ (s₁ a (mem_perm (perm.symm p₁) i)))
(λ s₂ a i, mem_perm (perm.symm p₂) (s₂ a (mem_perm p₁ i)))))
infix `⊆` := subset
theorem empty_subset (s : finset A) : ∅ ⊆ s :=
quot.induction_on s (λ l, list.nil_sub (elt_of l))
theorem subset_univ [h : fintype A] (s : finset A) : s ⊆ univ :=
quot.induction_on s (λ l a i, fintype.complete a)
theorem subset.refl (s : finset A) : s ⊆ s :=
quot.induction_on s (λ l, list.sub.refl (elt_of l))
theorem subset.trans {s₁ s₂ s₃ : finset A} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ :=
quot.induction_on₃ s₁ s₂ s₃ (λ l₁ l₂ l₃ h₁ h₂, list.sub.trans h₁ h₂)
theorem mem_of_subset_of_mem {s₁ s₂ : finset A} {a : A} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h₁ h₂, h₁ a h₂)
theorem subset_of_forall {s₁ s₂ : finset A} : (∀x, x ∈ s₁ → x ∈ s₂) → s₁ ⊆ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ H, H)
theorem subset_insert [h : decidable_eq A] (s : finset A) (a : A) : s ⊆ insert a s :=
subset_of_forall (take x, assume H : x ∈ s, mem_insert_of_mem _ H)
theorem eq_of_subset_of_subset {s₁ s₂ : finset A} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ :=
ext (take x, iff.intro (assume H, mem_of_subset_of_mem H₁ H) (assume H, mem_of_subset_of_mem H₂ H))
section
variable [decA : decidable_eq A]
include decA
theorem erase_subset_erase_of_subset {a : A} {s₁ s₂ : finset A} : s₁ ⊆ s₂ → erase a s₁ ⊆ erase a s₂ :=
λ is_sub, subset_of_forall (λ b bin,
mem_erase_of_ne_of_mem (ne_of_mem_erase bin) (mem_of_subset_of_mem is_sub (mem_of_mem_erase bin)))
end
/- upto -/
section upto
definition upto (n : nat) : finset nat :=
to_finset_of_nodup (list.upto n) (nodup_upto n)
theorem card_upto : ∀ n, card (upto n) = n :=
list.length_upto
theorem lt_of_mem_upto {n a : nat} : a ∈ upto n → a < n :=
list.lt_of_mem_upto
theorem mem_upto_succ_of_mem_upto {n a : nat} : a ∈ upto n → a ∈ upto (succ n) :=
list.mem_upto_succ_of_mem_upto
theorem mem_upto_of_lt {n a : nat} : a < n → a ∈ upto n :=
list.mem_upto_of_lt
theorem mem_upto_iff (a n : nat) : a ∈ upto n ↔ a < n :=
iff.intro lt_of_mem_upto mem_upto_of_lt
theorem mem_upto_eq (a n : nat) : a ∈ upto n = (a < n) :=
propext !mem_upto_iff
end upto
/- useful rules for calculations with quantifiers -/
theorem exists_mem_empty_iff {A : Type} (P : A → Prop) : (∃ x, x ∈ ∅ ∧ P x) ↔ false :=
iff.intro
(assume H,
obtain x (H1 : x ∈ ∅ ∧ P x), from H,
!not_mem_empty (and.left H1))
(assume H, false.elim H)
theorem exists_mem_empty_eq {A : Type} (P : A → Prop) : (∃ x, x ∈ ∅ ∧ P x) = false :=
propext !exists_mem_empty_iff
theorem exists_mem_insert_iff {A : Type} [d : decidable_eq A]
(a : A) (s : finset A) (P : A → Prop) :
(∃ x, x ∈ insert a s ∧ P x) ↔ P a (∃ x, x ∈ s ∧ P x) :=
iff.intro
(assume H,
obtain x [H1 H2], from H,
or.elim (eq_or_mem_of_mem_insert H1)
(assume H3 : x = a, or.inl (eq.subst H3 H2))
(assume H3 : x ∈ s, or.inr (exists.intro x (and.intro H3 H2))))
(assume H,
or.elim H
(assume H1 : P a, exists.intro a (and.intro !mem_insert H1))
(assume H1 : ∃ x, x ∈ s ∧ P x,
obtain x [H2 H3], from H1,
exists.intro x (and.intro (!mem_insert_of_mem H2) H3)))
theorem exists_mem_insert_eq {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) :
(∃ x, x ∈ insert a s ∧ P x) = (P a (∃ x, x ∈ s ∧ P x)) :=
propext !exists_mem_insert_iff
theorem forall_mem_empty_iff {A : Type} (P : A → Prop) : (∀ x, x ∈ ∅ → P x) ↔ true :=
iff.intro
(assume H, trivial)
(assume H, take x, assume H', absurd H' !not_mem_empty)
theorem forall_mem_empty_eq {A : Type} (P : A → Prop) : (∀ x, x ∈ ∅ → P x) = true :=
propext !forall_mem_empty_iff
theorem forall_mem_insert_iff {A : Type} [d : decidable_eq A]
(a : A) (s : finset A) (P : A → Prop) :
(∀ x, x ∈ insert a s → P x) ↔ P a ∧ (∀ x, x ∈ s → P x) :=
iff.intro
(assume H, and.intro (H _ !mem_insert) (take x, assume H', H _ (!mem_insert_of_mem H')))
(assume H, take x, assume H' : x ∈ insert a s,
or.elim (eq_or_mem_of_mem_insert H')
(assume H1 : x = a, eq.subst (eq.symm H1) (and.left H))
(assume H1 : x ∈ s, and.right H _ H1))
theorem forall_mem_insert_eq {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) :
(∀ x, x ∈ insert a s → P x) = (P a ∧ (∀ x, x ∈ s → P x)) :=
propext !forall_mem_insert_iff
end finset