lean2/library/logic/connectives.lean

153 lines
4.7 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Haitao Zhang
The propositional connectives. See also init.datatypes and init.logic.
-/
open eq.ops
variables {a b c d : Prop}
/- implies -/
definition imp (a b : Prop) : Prop := a → b
theorem imp.id (H : a) : a := H
theorem imp.intro (H : a) (H₂ : b) : a := H
theorem imp.mp (H : a) (H₂ : a → b) : b :=
H₂ H
theorem imp.syl (H : a → b) (H₂ : c → a) (Hc : c) : b :=
H (H₂ Hc)
theorem imp.left (H : a → b) (H₂ : b → c) (Ha : a) : c :=
H₂ (H Ha)
theorem imp_true (a : Prop) : (a → true) ↔ true :=
iff_true_intro (imp.intro trivial)
theorem true_imp (a : Prop) : (true → a) ↔ a :=
iff.intro (assume H, H trivial) imp.intro
theorem imp_false (a : Prop) : (a → false) ↔ ¬ a := iff.rfl
theorem false_imp (a : Prop) : (false → a) ↔ true :=
iff_true_intro false.elim
/- not -/
theorem not.elim {A : Type} (H1 : ¬a) (H2 : a) : A := absurd H2 H1
theorem not.mto {a b : Prop} : (a → b) → ¬b → ¬a := imp.left
theorem not_imp_not_of_imp {a b : Prop} : (a → b) → ¬b → ¬a := not.mto
theorem not_not_of_not_implies : ¬(a → b) → ¬¬a :=
not.mto not.elim
theorem not_of_not_implies : ¬(a → b) → ¬b :=
not.mto imp.intro
theorem not_not_em : ¬¬(a ¬a) :=
assume not_em : ¬(a ¬a),
not_em (or.inr (not.mto or.inl not_em))
theorem not_iff_not (H : a ↔ b) : ¬a ↔ ¬b :=
iff.intro (not.mto (iff.mpr H)) (not.mto (iff.mp H))
/- and -/
definition not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b) :=
not.mto and.left
definition not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b) :=
not.mto and.right
theorem and.imp_left (H : a → b) : a ∧ c → b ∧ c :=
and.imp H imp.id
theorem and.imp_right (H : a → b) : c ∧ a → c ∧ b :=
and.imp imp.id H
theorem and_of_and_of_imp_of_imp (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
and.imp H₂ H₃ H₁
theorem and_of_and_of_imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
and.imp_left H H₁
theorem and_of_and_of_imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
and.imp_right H H₁
theorem and_imp_iff (a b c : Prop) : (a ∧ b → c) ↔ (a → b → c) :=
iff.intro (λH a b, H (and.intro a b)) and.rec
theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) :=
propext !and_imp_iff
/- or -/
definition not_or : ¬a → ¬b → ¬(a b) := or.rec
theorem or_of_or_of_imp_of_imp (H₁ : a b) (H₂ : a → c) (H₃ : b → d) : c d :=
or.imp H₂ H₃ H₁
theorem or_of_or_of_imp_left (H₁ : a c) (H : a → b) : b c :=
or.imp_left H H₁
theorem or_of_or_of_imp_right (H₁ : c a) (H : a → b) : c b :=
or.imp_right H H₁
theorem or.elim3 (H : a b c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
or.elim H Ha (assume H₂, or.elim H₂ Hb Hc)
theorem or_resolve_right (H₁ : a b) (H₂ : ¬a) : b :=
or.elim H₁ (not.elim H₂) imp.id
theorem or_resolve_left (H₁ : a b) : ¬b → a :=
or_resolve_right (or.swap H₁)
theorem or.imp_distrib : ((a b) → c) ↔ ((a → c) ∧ (b → c)) :=
iff.intro
(λH, and.intro (imp.syl H or.inl) (imp.syl H or.inr))
(and.rec or.rec)
theorem or_iff_right_of_imp {a b : Prop} (Ha : a → b) : (a b) ↔ b :=
iff.intro (or.rec Ha imp.id) or.inr
theorem or_iff_left_of_imp {a b : Prop} (Hb : b → a) : (a b) ↔ a :=
iff.intro (or.rec imp.id Hb) or.inl
theorem or_iff_or (H1 : a ↔ c) (H2 : b ↔ d) : (a b) ↔ (c d) :=
iff.intro (or.imp (iff.mp H1) (iff.mp H2)) (or.imp (iff.mpr H1) (iff.mpr H2))
/- distributivity -/
theorem and.left_distrib (a b c : Prop) : a ∧ (b c) ↔ (a ∧ b) (a ∧ c) :=
iff.intro
(and.rec (λH, or.imp (and.intro H) (and.intro H)))
(or.rec (and.imp_right or.inl) (and.imp_right or.inr))
theorem and.right_distrib (a b c : Prop) : (a b) ∧ c ↔ (a ∧ c) (b ∧ c) :=
iff.trans (iff.trans !and.comm !and.left_distrib) (or_iff_or !and.comm !and.comm)
theorem or.left_distrib (a b c : Prop) : a (b ∧ c) ↔ (a b) ∧ (a c) :=
iff.intro
(or.rec (λH, and.intro (or.inl H) (or.inl H)) (and.imp or.inr or.inr))
(and.rec (or.rec (imp.syl imp.intro or.inl) (imp.syl or.imp_right and.intro)))
theorem or.right_distrib (a b c : Prop) : (a ∧ b) c ↔ (a c) ∧ (b c) :=
iff.trans (iff.trans !or.comm !or.left_distrib) (and_congr !or.comm !or.comm)
/- iff -/
definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) := rfl
theorem forall_imp_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a → Q a)) (p : ∀a, P a) (a : A) : Q a :=
(H a) (p a)
theorem imp_iff {P : Prop} (Q : Prop) (p : P) : (P → Q) ↔ Q :=
iff.intro (λf, f p) imp.intro