2015-08-08 16:50:22 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Author: Jeremy Avigad
|
|
|
|
|
|
|
|
|
|
Cardinality of finite sets.
|
|
|
|
|
-/
|
|
|
|
|
import .finite data.finset.card
|
2015-08-12 17:06:15 -07:00
|
|
|
|
open nat classical
|
2015-08-08 16:50:22 -04:00
|
|
|
|
|
|
|
|
|
namespace set
|
|
|
|
|
|
|
|
|
|
variable {A : Type}
|
|
|
|
|
|
|
|
|
|
noncomputable definition card (s : set A) := finset.card (set.to_finset s)
|
|
|
|
|
|
|
|
|
|
theorem card_to_set (s : finset A) : card (finset.to_set s) = finset.card s :=
|
|
|
|
|
by rewrite [↑card, to_finset_to_set]
|
|
|
|
|
|
|
|
|
|
theorem card_of_not_finite {s : set A} (nfins : ¬ finite s) : card s = 0 :=
|
|
|
|
|
by rewrite [↑card, to_finset_of_not_finite nfins]
|
|
|
|
|
|
|
|
|
|
theorem card_empty : card (∅ : set A) = 0 :=
|
|
|
|
|
by rewrite [-finset.to_set_empty, card_to_set]
|
|
|
|
|
|
|
|
|
|
theorem card_insert_of_mem {a : A} {s : set A} (H : a ∈ s) : card (insert a s) = card s :=
|
|
|
|
|
if fins : finite s then
|
|
|
|
|
(by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_mem H])
|
|
|
|
|
else
|
|
|
|
|
(assert ¬ finite (insert a s), from suppose _, absurd (!finite_of_finite_insert this) fins,
|
|
|
|
|
by rewrite [card_of_not_finite fins, card_of_not_finite this])
|
|
|
|
|
|
|
|
|
|
theorem card_insert_of_not_mem {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
|
|
|
|
|
card (insert a s) = card s + 1 :=
|
|
|
|
|
by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_not_mem H]
|
|
|
|
|
|
|
|
|
|
theorem card_insert_le (a : A) (s : set A) [fins : finite s] :
|
|
|
|
|
card (insert a s) ≤ card s + 1 :=
|
|
|
|
|
if H : a ∈ s then by rewrite [card_insert_of_mem H]; apply le_succ
|
|
|
|
|
else by rewrite [card_insert_of_not_mem H]
|
|
|
|
|
|
|
|
|
|
theorem card_singleton (a : A) : card '{a} = 1 :=
|
|
|
|
|
by rewrite [card_insert_of_not_mem !not_mem_empty, card_empty]
|
|
|
|
|
|
|
|
|
|
/- Note: the induction tactic does not work well with the set induction principle with the
|
|
|
|
|
extra predicate "finite". -/
|
|
|
|
|
theorem eq_empty_of_card_eq_zero {s : set A} [fins : finite s] : card s = 0 → s = ∅ :=
|
|
|
|
|
induction_on_finite s
|
|
|
|
|
(by intro H; exact rfl)
|
|
|
|
|
(begin
|
|
|
|
|
intro a s' fins' anins IH H,
|
|
|
|
|
rewrite (card_insert_of_not_mem anins) at H,
|
|
|
|
|
apply nat.no_confusion H
|
|
|
|
|
end)
|
|
|
|
|
|
|
|
|
|
theorem card_upto (n : ℕ) : card {i | i < n} = n :=
|
|
|
|
|
by rewrite [↑card, to_finset_upto, finset.card_upto]
|
|
|
|
|
|
|
|
|
|
theorem card_add_card (s₁ s₂ : set A) [fins₁ : finite s₁] [fins₂ : finite s₂] :
|
|
|
|
|
card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite [-to_set_to_finset s₁, -to_set_to_finset s₂],
|
|
|
|
|
rewrite [-finset.to_set_union, -finset.to_set_inter, *card_to_set],
|
|
|
|
|
apply finset.card_add_card
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem card_union (s₁ s₂ : set A) [fins₁ : finite s₁] [fins₂ : finite s₂] :
|
|
|
|
|
card (s₁ ∪ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) :=
|
|
|
|
|
calc
|
|
|
|
|
card (s₁ ∪ s₂) = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : add_sub_cancel
|
|
|
|
|
... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card s₁ s₂
|
|
|
|
|
|
|
|
|
|
theorem card_union_of_disjoint {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ∩ s₂ = ∅) :
|
|
|
|
|
card (s₁ ∪ s₂) = card s₁ + card s₂ :=
|
|
|
|
|
by rewrite [card_union, H, card_empty]
|
|
|
|
|
|
|
|
|
|
theorem card_eq_card_add_card_diff {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ⊆ s₂) :
|
|
|
|
|
card s₂ = card s₁ + card (s₂ \ s₁) :=
|
|
|
|
|
have H1 : s₁ ∩ (s₂ \ s₁) = ∅,
|
|
|
|
|
from eq_empty_of_forall_not_mem (take x, assume H, (and.right (and.right H)) (and.left H)),
|
|
|
|
|
have s₂ = s₁ ∪ (s₂ \ s₁), from eq.symm (union_diff_cancel H),
|
|
|
|
|
calc
|
|
|
|
|
card s₂ = card (s₁ ∪ (s₂ \ s₁)) : {this}
|
|
|
|
|
... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1
|
|
|
|
|
|
|
|
|
|
theorem card_le_card_of_subset {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ⊆ s₂) :
|
|
|
|
|
card s₁ ≤ card s₂ :=
|
|
|
|
|
calc
|
|
|
|
|
card s₂ = card s₁ + card (s₂ \ s₁) : card_eq_card_add_card_diff H
|
|
|
|
|
... ≥ card s₁ : le_add_right
|
|
|
|
|
|
|
|
|
|
variable {B : Type}
|
|
|
|
|
|
|
|
|
|
theorem card_image_eq_of_inj_on {f : A → B} {s : set A} [fins : finite s] (injfs : inj_on f s) :
|
|
|
|
|
card (image f s) = card s :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite [↑card, to_finset_image];
|
|
|
|
|
apply finset.card_image_eq_of_inj_on,
|
|
|
|
|
rewrite to_set_to_finset,
|
|
|
|
|
apply injfs
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem card_le_of_inj_on (a : set A) (b : set B) [finb : finite b]
|
|
|
|
|
(Pex : ∃ f : A → B, inj_on f a ∧ (image f a ⊆ b)) :
|
|
|
|
|
card a ≤ card b :=
|
|
|
|
|
by_cases
|
|
|
|
|
(assume fina : finite a,
|
|
|
|
|
obtain f H, from Pex,
|
|
|
|
|
finset.card_le_of_inj_on (to_finset a) (to_finset b)
|
|
|
|
|
(exists.intro f
|
|
|
|
|
begin
|
|
|
|
|
rewrite [finset.subset_eq_to_set_subset, finset.to_set_image, *to_set_to_finset],
|
|
|
|
|
exact H
|
|
|
|
|
end))
|
|
|
|
|
(assume nfina : ¬ finite a,
|
|
|
|
|
by rewrite [card_of_not_finite nfina]; exact !zero_le)
|
|
|
|
|
|
|
|
|
|
theorem card_image_le (f : A → B) (s : set A) [fins : finite s] : card (image f s) ≤ card s :=
|
|
|
|
|
by rewrite [↑card, to_finset_image]; apply finset.card_image_le
|
|
|
|
|
|
|
|
|
|
theorem inj_on_of_card_image_eq {f : A → B} {s : set A} [fins : finite s]
|
|
|
|
|
(H : card (image f s) = card s) : inj_on f s :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite -to_set_to_finset,
|
|
|
|
|
apply finset.inj_on_of_card_image_eq,
|
|
|
|
|
rewrite [-to_finset_to_set (finset.image _ _), finset.to_set_image, to_set_to_finset],
|
|
|
|
|
exact H
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem card_pos_of_mem {a : A} {s : set A} [fins : finite s] (H : a ∈ s) : card s > 0 :=
|
|
|
|
|
have (#finset a ∈ to_finset s), by rewrite [finset.mem_eq_mem_to_set, to_set_to_finset]; apply H,
|
|
|
|
|
finset.card_pos_of_mem this
|
|
|
|
|
|
|
|
|
|
theorem eq_of_card_eq_of_subset {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
|
|
|
|
|
(Hcard : card s₁ = card s₂) (Hsub : s₁ ⊆ s₂) :
|
|
|
|
|
s₁ = s₂ :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite [-to_set_to_finset s₁, -to_set_to_finset s₂, -finset.eq_eq_to_set_eq],
|
|
|
|
|
apply finset.eq_of_card_eq_of_subset Hcard,
|
|
|
|
|
rewrite [to_finset_subset_to_finset_eq],
|
|
|
|
|
exact Hsub
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem exists_two_of_card_gt_one {s : set A} (H : 1 < card s) : ∃ a b, a ∈ s ∧ b ∈ s ∧ a ≠ b :=
|
|
|
|
|
assert fins : finite s, from
|
|
|
|
|
by_contradiction
|
|
|
|
|
(assume nfins, by rewrite [card_of_not_finite nfins at H]; apply !not_succ_le_zero H),
|
|
|
|
|
by rewrite [-to_set_to_finset s]; apply finset.exists_two_of_card_gt_one H
|
|
|
|
|
|
|
|
|
|
end set
|