lean2/library/data/nat/basic.lean

352 lines
12 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.nat.basic
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad
Basic operations on the natural numbers.
-/
import logic.connectives data.num algebra.binary algebra.ring
open binary eq.ops
namespace nat
/- a variant of add, defined by recursion on the first argument -/
definition addl (x y : ) : :=
nat.rec y (λ n r, succ r) x
infix `⊕`:65 := addl
theorem addl.succ_right (n m : ) : n ⊕ succ m = succ (n ⊕ m) :=
nat.induction_on n
rfl
(λ n₁ ih, calc
succ n₁ ⊕ succ m = succ (n₁ ⊕ succ m) : rfl
... = succ (succ (n₁ ⊕ m)) : ih
... = succ (succ n₁ ⊕ m) : rfl)
theorem add_eq_addl (x : ) : ∀y, x + y = x ⊕ y :=
nat.induction_on x
(λ y, nat.induction_on y
rfl
(λ y₁ ih, calc
zero + succ y₁ = succ (zero + y₁) : rfl
... = succ (zero ⊕ y₁) : {ih}
... = zero ⊕ (succ y₁) : rfl))
(λ x₁ ih₁ y, nat.induction_on y
(calc
succ x₁ + zero = succ (x₁ + zero) : rfl
... = succ (x₁ ⊕ zero) : {ih₁ zero}
... = succ x₁ ⊕ zero : rfl)
(λ y₁ ih₂, calc
succ x₁ + succ y₁ = succ (succ x₁ + y₁) : rfl
... = succ (succ x₁ ⊕ y₁) : {ih₂}
... = succ x₁ ⊕ succ y₁ : addl.succ_right))
/- successor and predecessor -/
theorem succ_ne_zero (n : ) : succ n ≠ 0 :=
assume H, nat.no_confusion H
-- add_rewrite succ_ne_zero
theorem pred_zero : pred 0 = 0 :=
rfl
theorem pred_succ (n : ) : pred (succ n) = n :=
rfl
theorem eq_zero_or_eq_succ_pred (n : ) : n = 0 n = succ (pred n) :=
nat.induction_on n
(or.inl rfl)
(take m IH, or.inr
(show succ m = succ (pred (succ m)), from congr_arg succ !pred_succ⁻¹))
theorem exists_eq_succ_of_ne_zero {n : } (H : n ≠ 0) : ∃k : , n = succ k :=
exists.intro _ (or_resolve_right !eq_zero_or_eq_succ_pred H)
theorem succ.inj {n m : } (H : succ n = succ m) : n = m :=
nat.no_confusion H (λe, e)
theorem succ.ne_self {n : } : succ n ≠ n :=
nat.induction_on n
(take H : 1 = 0,
have ne : 1 ≠ 0, from !succ_ne_zero,
absurd H ne)
(take k IH H, IH (succ.inj H))
theorem discriminate {B : Prop} {n : } (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B :=
have H : n = n → B, from nat.cases_on n H1 H2,
H rfl
theorem two_step_induction_on {P : → Prop} (a : ) (H1 : P 0) (H2 : P 1)
(H3 : ∀ (n : ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
have stronger : P a ∧ P (succ a), from
nat.induction_on a
(and.intro H1 H2)
(take k IH,
have IH1 : P k, from and.elim_left IH,
have IH2 : P (succ k), from and.elim_right IH,
and.intro IH2 (H3 k IH1 IH2)),
and.elim_left stronger
theorem sub_induction {P : → Prop} (n m : ) (H1 : ∀m, P 0 m)
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m :=
have general : ∀m, P n m, from nat.induction_on n
(take m : , H1 m)
(take k : ,
assume IH : ∀m, P k m,
take m : ,
nat.cases_on m (H2 k) (take l, (H3 k l (IH l)))),
general m
/- addition -/
theorem add_zero (n : ) : n + 0 = n :=
rfl
theorem add_succ (n m : ) : n + succ m = succ (n + m) :=
rfl
theorem zero_add (n : ) : 0 + n = n :=
nat.induction_on n
!add_zero
(take m IH, show 0 + succ m = succ m, from
calc
0 + succ m = succ (0 + m) : add_succ
... = succ m : IH)
theorem add.succ_left (n m : ) : (succ n) + m = succ (n + m) :=
nat.induction_on m
(!add_zero ▸ !add_zero)
(take k IH, calc
succ n + succ k = succ (succ n + k) : add_succ
... = succ (succ (n + k)) : IH
... = succ (n + succ k) : add_succ)
theorem add.comm (n m : ) : n + m = m + n :=
nat.induction_on m
(!add_zero ⬝ !zero_add⁻¹)
(take k IH, calc
n + succ k = succ (n+k) : add_succ
... = succ (k + n) : IH
... = succ k + n : add.succ_left)
theorem succ_add_eq_succ_add (n m : ) : succ n + m = n + succ m :=
!add.succ_left ⬝ !add_succ⁻¹
theorem add.assoc (n m k : ) : (n + m) + k = n + (m + k) :=
nat.induction_on k
(!add_zero ▸ !add_zero)
(take l IH,
calc
(n + m) + succ l = succ ((n + m) + l) : add_succ
... = succ (n + (m + l)) : IH
... = n + succ (m + l) : add_succ
... = n + (m + succ l) : add_succ)
theorem add.left_comm (n m k : ) : n + (m + k) = m + (n + k) :=
left_comm add.comm add.assoc n m k
theorem add.right_comm (n m k : ) : n + m + k = n + k + m :=
right_comm add.comm add.assoc n m k
theorem add.cancel_left {n m k : } : n + m = n + k → m = k :=
nat.induction_on n
(take H : 0 + m = 0 + k,
!zero_add⁻¹ ⬝ H ⬝ !zero_add)
(take (n : ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
have H2 : succ (n + m) = succ (n + k),
from calc
succ (n + m) = succ n + m : add.succ_left
... = succ n + k : H
... = succ (n + k) : add.succ_left,
have H3 : n + m = n + k, from succ.inj H2,
IH H3)
theorem add.cancel_right {n m k : } (H : n + m = k + m) : n = k :=
have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm,
add.cancel_left H2
theorem eq_zero_of_add_eq_zero_right {n m : } : n + m = 0 → n = 0 :=
nat.induction_on n
(take (H : 0 + m = 0), rfl)
(take k IH,
assume H : succ k + m = 0,
absurd
(show succ (k + m) = 0, from calc
succ (k + m) = succ k + m : add.succ_left
... = 0 : H)
!succ_ne_zero)
theorem eq_zero_of_add_eq_zero_left {n m : } (H : n + m = 0) : m = 0 :=
eq_zero_of_add_eq_zero_right (!add.comm ⬝ H)
theorem add.eq_zero {n m : } (H : n + m = 0) : n = 0 ∧ m = 0 :=
and.intro (eq_zero_of_add_eq_zero_right H) (eq_zero_of_add_eq_zero_left H)
theorem add_one (n : ) : n + 1 = succ n :=
!add_zero ▸ !add_succ
theorem one_add (n : ) : 1 + n = succ n :=
!zero_add ▸ !add.succ_left
/- multiplication -/
theorem mul_zero (n : ) : n * 0 = 0 :=
rfl
theorem mul_succ (n m : ) : n * succ m = n * m + n :=
rfl
-- commutativity, distributivity, associativity, identity
theorem zero_mul (n : ) : 0 * n = 0 :=
nat.induction_on n
!mul_zero
(take m IH, !mul_succ ⬝ !add_zero ⬝ IH)
theorem succ_mul (n m : ) : (succ n) * m = (n * m) + m :=
nat.induction_on m
(!mul_zero ⬝ !mul_zero⁻¹ ⬝ !add_zero⁻¹)
(take k IH, calc
succ n * succ k = succ n * k + succ n : mul_succ
... = n * k + k + succ n : IH
... = n * k + (k + succ n) : add.assoc
... = n * k + (succ n + k) : add.comm
... = n * k + (n + succ k) : succ_add_eq_succ_add
... = n * k + n + succ k : add.assoc
... = n * succ k + succ k : mul_succ)
theorem mul.comm (n m : ) : n * m = m * n :=
nat.induction_on m
(!mul_zero ⬝ !zero_mul⁻¹)
(take k IH, calc
n * succ k = n * k + n : mul_succ
... = k * n + n : IH
... = (succ k) * n : succ_mul)
theorem mul.right_distrib (n m k : ) : (n + m) * k = n * k + m * k :=
nat.induction_on k
(calc
(n + m) * 0 = 0 : mul_zero
... = 0 + 0 : add_zero
... = n * 0 + 0 : mul_zero
... = n * 0 + m * 0 : mul_zero)
(take l IH, calc
(n + m) * succ l = (n + m) * l + (n + m) : mul_succ
... = n * l + m * l + (n + m) : IH
... = n * l + m * l + n + m : add.assoc
... = n * l + n + m * l + m : add.right_comm
... = n * l + n + (m * l + m) : add.assoc
... = n * succ l + (m * l + m) : mul_succ
... = n * succ l + m * succ l : mul_succ)
theorem mul.left_distrib (n m k : ) : n * (m + k) = n * m + n * k :=
calc
n * (m + k) = (m + k) * n : mul.comm
... = m * n + k * n : mul.right_distrib
... = n * m + k * n : mul.comm
... = n * m + n * k : mul.comm
theorem mul.assoc (n m k : ) : (n * m) * k = n * (m * k) :=
nat.induction_on k
(calc
(n * m) * 0 = n * (m * 0) : mul_zero)
(take l IH,
calc
(n * m) * succ l = (n * m) * l + n * m : mul_succ
... = n * (m * l) + n * m : IH
... = n * (m * l + m) : mul.left_distrib
... = n * (m * succ l) : mul_succ)
theorem mul_one (n : ) : n * 1 = n :=
calc
n * 1 = n * 0 + n : mul_succ
... = 0 + n : mul_zero
... = n : zero_add
theorem one_mul (n : ) : 1 * n = n :=
calc
1 * n = n * 1 : mul.comm
... = n : mul_one
theorem eq_zero_or_eq_zero_of_mul_eq_zero {n m : } : n * m = 0 → n = 0 m = 0 :=
nat.cases_on n
(assume H, or.inl rfl)
(take n',
nat.cases_on m
(assume H, or.inr rfl)
(take m',
assume H : succ n' * succ m' = 0,
absurd
((calc
0 = succ n' * succ m' : H
... = succ n' * m' + succ n' : mul_succ
... = succ (succ n' * m' + n') : add_succ)⁻¹)
!succ_ne_zero))
section
open [classes] algebra
protected definition comm_semiring [instance] [reducible] : algebra.comm_semiring nat :=
⦃algebra.comm_semiring,
add := add,
add_assoc := add.assoc,
zero := zero,
zero_add := zero_add,
add_zero := add_zero,
add_comm := add.comm,
mul := mul,
mul_assoc := mul.assoc,
one := succ zero,
one_mul := one_mul,
mul_one := mul_one,
left_distrib := mul.left_distrib,
right_distrib := mul.right_distrib,
zero_mul := zero_mul,
mul_zero := mul_zero,
zero_ne_one := ne.symm (succ_ne_zero zero),
mul_comm := mul.comm⦄
end
section port_algebra
theorem mul.left_comm : ∀a b c : , a * (b * c) = b * (a * c) := algebra.mul.left_comm
theorem mul.right_comm : ∀a b c : , (a * b) * c = (a * c) * b := algebra.mul.right_comm
definition dvd (a b : ) : Prop := algebra.dvd a b
notation (a | b) := dvd a b
theorem dvd.intro : ∀{a b c : } (H : a * c = b), (a | b) := @algebra.dvd.intro _ _
theorem dvd.intro_left : ∀{a b c : } (H : c * a = b), (a | b) := @algebra.dvd.intro_left _ _
theorem exists_eq_mul_right_of_dvd : ∀{a b : } (H : (a | b)), ∃c, b = a * c :=
@algebra.exists_eq_mul_right_of_dvd _ _
theorem dvd.elim : ∀{P : Prop} {a b : } (H₁ : (a | b)) (H₂ : ∀c, b = a * c → P), P :=
@algebra.dvd.elim _ _
theorem exists_eq_mul_left_of_dvd : ∀{a b : } (H : (a | b)), ∃c, b = c * a :=
@algebra.exists_eq_mul_left_of_dvd _ _
theorem dvd.elim_left : ∀{P : Prop} {a b : } (H₁ : (a | b)) (H₂ : ∀c, b = c * a → P), P :=
@algebra.dvd.elim_left _ _
theorem dvd.refl : ∀a : , (a | a) := algebra.dvd.refl
theorem dvd.trans : ∀{a b c : } (H₁ : (a | b)) (H₂ : (b | c)), (a | c) := @algebra.dvd.trans _ _
theorem eq_zero_of_zero_dvd : ∀{a : } (H : (0 | a)), a = 0 := @algebra.eq_zero_of_zero_dvd _ _
theorem dvd_zero : ∀a : , (a | 0) := algebra.dvd_zero
theorem one_dvd : ∀a : , (1 | a) := algebra.one_dvd
theorem dvd_mul_right : ∀a b : , (a | a * b) := algebra.dvd_mul_right
theorem dvd_mul_left : ∀a b : , (a | b * a) := algebra.dvd_mul_left
theorem dvd_mul_of_dvd_left : ∀{a b : } (H : (a | b)) (c : ), (a | b * c) :=
@algebra.dvd_mul_of_dvd_left _ _
theorem dvd_mul_of_dvd_right : ∀{a b : } (H : (a | b)) (c : ), (a | c * b) :=
@algebra.dvd_mul_of_dvd_right _ _
theorem mul_dvd_mul : ∀{a b c d : }, (a | b) → (c | d) → (a * c | b * d) :=
@algebra.mul_dvd_mul _ _
theorem dvd_of_mul_right_dvd : ∀{a b c : }, (a * b | c) → (a | c) :=
@algebra.dvd_of_mul_right_dvd _ _
theorem dvd_of_mul_left_dvd : ∀{a b c : }, (a * b | c) → (b | c) :=
@algebra.dvd_of_mul_left_dvd _ _
theorem dvd_add : ∀{a b c : }, (a | b) → (a | c) → (a | b + c) := @algebra.dvd_add _ _
end port_algebra
end nat