lean2/library/data/list/comb.lean

279 lines
10 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.list.comb
Authors: Leonardo de Moura
List combinators
-/
import data.list.basic
open nat prod decidable function helper_tactics
namespace list
variables {A B C : Type}
definition map (f : A → B) : list A → list B
| [] := []
| (a :: l) := f a :: map l
theorem map_nil (f : A → B) : map f [] = []
theorem map_cons (f : A → B) (a : A) (l : list A) : map f (a :: l) = f a :: map f l
theorem map_id : ∀ l : list A, map id l = l
| [] := rfl
| (x::xs) := begin rewrite [map_cons, map_id] end
theorem map_map (g : B → C) (f : A → B) : ∀ l, map g (map f l) = map (g ∘ f) l
| [] := rfl
| (a :: l) :=
show (g ∘ f) a :: map g (map f l) = map (g ∘ f) (a :: l),
by rewrite (map_map l)
theorem len_map (f : A → B) : ∀ l : list A, length (map f l) = length l
| [] := by esimp
| (a :: l) :=
show length (map f l) + 1 = length l + 1,
by rewrite (len_map l)
theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l
| a [] i := absurd i !not_mem_nil
| a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i)
(λ aeqx : a = x, by rewrite [aeqx, map_cons]; apply mem_cons)
(λ ainxs : a ∈ xs, or.inr (mem_map ainxs))
theorem eq_of_map_const {A B : Type} {b₁ b₂ : B} : ∀ {l : list A}, b₁ ∈ map (const A b₂) l → b₁ = b₂
| [] h := absurd h !not_mem_nil
| (a::l) h :=
or.elim (eq_or_mem_of_mem_cons h)
(λ b₁eqb₂ : b₁ = b₂, b₁eqb₂)
(λ b₁inl : b₁ ∈ map (const A b₂) l, eq_of_map_const b₁inl)
definition map₂ (f : A → B → C) : list A → list B → list C
| [] _ := []
| _ [] := []
| (x::xs) (y::ys) := f x y :: map₂ xs ys
definition foldl (f : A → B → A) : A → list B → A
| a [] := a
| a (b :: l) := foldl (f a b) l
theorem foldl_nil (f : A → B → A) (a : A) : foldl f a [] = a
theorem foldl_cons (f : A → B → A) (a : A) (b : B) (l : list B) : foldl f a (b::l) = foldl f (f a b) l
definition foldr (f : A → B → B) : B → list A → B
| b [] := b
| b (a :: l) := f a (foldr b l)
theorem foldr_nil (f : A → B → B) (b : B) : foldr f b [] = b
theorem foldr_cons (f : A → B → B) (b : B) (a : A) (l : list A) : foldr f b (a::l) = f a (foldr f b l)
section foldl_eq_foldr
-- foldl and foldr coincide when f is commutative and associative
parameters {α : Type} {f : ααα}
hypothesis (Hcomm : ∀ a b, f a b = f b a)
hypothesis (Hassoc : ∀ a b c, f (f a b) c = f a (f b c))
include Hcomm Hassoc
theorem foldl_eq_of_comm_of_assoc : ∀ a b l, foldl f a (b::l) = f b (foldl f a l)
| a b nil := Hcomm a b
| a b (c::l) :=
begin
change (foldl f (f (f a b) c) l = f b (foldl f (f a c) l)),
rewrite -foldl_eq_of_comm_of_assoc,
change (foldl f (f (f a b) c) l = foldl f (f (f a c) b) l),
have H₁ : f (f a b) c = f (f a c) b, by rewrite [Hassoc, Hassoc, Hcomm b c],
rewrite H₁
end
theorem foldl_eq_foldr : ∀ a l, foldl f a l = foldr f a l
| a nil := rfl
| a (b :: l) :=
begin
rewrite foldl_eq_of_comm_of_assoc,
esimp,
change (f b (foldl f a l) = f b (foldr f a l)),
rewrite foldl_eq_foldr
end
end foldl_eq_foldr
theorem foldl_append (f : B → A → B) : ∀ (b : B) (l₁ l₂ : list A), foldl f b (l₁++l₂) = foldl f (foldl f b l₁) l₂
| b [] l₂ := rfl
| b (a::l₁) l₂ := by rewrite [append_cons, *foldl_cons, foldl_append]
theorem foldr_append (f : A → B → B) : ∀ (b : B) (l₁ l₂ : list A), foldr f b (l₁++l₂) = foldr f (foldr f b l₂) l₁
| b [] l₂ := rfl
| b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append]
definition all (l : list A) (p : A → Prop) : Prop :=
foldr (λ a r, p a ∧ r) true l
definition any (l : list A) (p : A → Prop) : Prop :=
foldr (λ a r, p a r) false l
theorem all_nil (p : A → Prop) : all [] p = true
theorem all_cons (p : A → Prop) (a : A) (l : list A) : all (a::l) p = (p a ∧ all l p)
theorem all_of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → all l p :=
assume h, by rewrite [all_cons at h]; exact (and.elim_right h)
theorem of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → p a :=
assume h, by rewrite [all_cons at h]; exact (and.elim_left h)
theorem all_cons_of_all {p : A → Prop} {a : A} {l : list A} : p a → all l p → all (a::l) p :=
assume pa alllp, and.intro pa alllp
theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q
| [] h₁ h₂ := trivial
| (a::l) h₁ h₂ :=
have allq : all l q, from all_implies (all_of_all_cons h₁) h₂,
have qa : q a, from h₂ a (of_all_cons h₁),
all_cons_of_all qa allq
theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a
| [] h₁ h₂ := absurd h₁ !not_mem_nil
| (b::l) h₁ h₂ :=
or.elim (eq_or_mem_of_mem_cons h₁)
(λ aeqb : a = b,
by rewrite [all_cons at h₂, -aeqb at h₂]; exact (and.elim_left h₂))
(λ ainl : a ∈ l,
have allp : all l p, by rewrite [all_cons at h₂]; exact (and.elim_right h₂),
of_mem_of_all ainl allp)
theorem any_nil (p : A → Prop) : any [] p = false
theorem any_cons (p : A → Prop) (a : A) (l : list A) : any (a::l) p = (p a any l p)
theorem any_of_mem (p : A → Prop) {a : A} : ∀ {l}, a ∈ l → p a → any l p
| [] i h := absurd i !not_mem_nil
| (b::l) i h :=
or.elim (eq_or_mem_of_mem_cons i)
(λ aeqb : a = b, by rewrite [-aeqb]; exact (or.inl h))
(λ ainl : a ∈ l,
have anyl : any l p, from any_of_mem ainl h,
or.inr anyl)
definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all l p)
| [] := decidable_true
| (a :: l) :=
match H a with
| inl Hp₁ :=
match decidable_all l with
| inl Hp₂ := inl (and.intro Hp₁ Hp₂)
| inr Hn₂ := inr (not_and_of_not_right (p a) Hn₂)
end
| inr Hn := inr (not_and_of_not_left (all l p) Hn)
end
definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any l p)
| [] := decidable_false
| (a :: l) :=
match H a with
| inl Hp := inl (or.inl Hp)
| inr Hn₁ :=
match decidable_any l with
| inl Hp₂ := inl (or.inr Hp₂)
| inr Hn₂ := inr (not_or Hn₁ Hn₂)
end
end
definition zip (l₁ : list A) (l₂ : list B) : list (A × B) :=
map₂ (λ a b, (a, b)) l₁ l₂
definition unzip : list (A × B) → list A × list B
| [] := ([], [])
| ((a, b) :: l) :=
match unzip l with
| (la, lb) := (a :: la, b :: lb)
end
theorem unzip_nil : unzip (@nil (A × B)) = ([], [])
theorem unzip_cons (a : A) (b : B) (l : list (A × B)) :
unzip ((a, b) :: l) = match unzip l with (la, lb) := (a :: la, b :: lb) end :=
rfl
theorem zip_unzip : ∀ (l : list (A × B)), zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l
| [] := rfl
| ((a, b) :: l) :=
begin
rewrite unzip_cons,
have r : zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l, from zip_unzip l,
revert r,
apply (prod.cases_on (unzip l)),
intros [la, lb, r],
rewrite -r
end
/- flat -/
definition flat (l : list (list A)) : list A :=
foldl append nil l
/- cross product -/
section cross_product
definition cross_product : list A → list B → list (A × B)
| [] l₂ := []
| (a::l₁) l₂ := map (λ b, (a, b)) l₂ ++ cross_product l₁ l₂
theorem nil_cross_product_nil (l : list B) : cross_product (@nil A) l = []
theorem cross_product_cons (a : A) (l₁ : list A) (l₂ : list B)
: cross_product (a::l₁) l₂ = map (λ b, (a, b)) l₂ ++ cross_product l₁ l₂
theorem cross_product_nil : ∀ (l : list A), cross_product l (@nil B) = []
| [] := rfl
| (a::l) := by rewrite [cross_product_cons, map_nil, cross_product_nil]
theorem eq_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → a₁ = a :=
assume ain,
assert h₁ : pr1 (a₁, b₁) ∈ map pr1 (map (λ b, (a, b)) l), from mem_map pr1 ain,
assert h₂ : a₁ ∈ map (λb, a) l, by rewrite [map_map at h₁, ↑pr1 at h₁]; exact h₁,
eq_of_map_const h₂
theorem mem_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → b₁ ∈ l :=
assume ain,
assert h₁ : pr2 (a₁, b₁) ∈ map pr2 (map (λ b, (a, b)) l), from mem_map pr2 ain,
assert h₂ : b₁ ∈ map (λx, x) l, by rewrite [map_map at h₁, ↑pr2 at h₁]; exact h₁,
by rewrite [map_id at h₂]; exact h₂
theorem mem_cross_product {a : A} {b : B} : ∀ {l₁ l₂}, a ∈ l₁ → b ∈ l₂ → (a, b) ∈ cross_product l₁ l₂
| [] l₂ h₁ h₂ := absurd h₁ !not_mem_nil
| (x::l₁) l₂ h₁ h₂ :=
or.elim (eq_or_mem_of_mem_cons h₁)
(λ aeqx : a = x,
assert aux : (a, b) ∈ map (λ b, (a, b)) l₂, from mem_map _ h₂,
by rewrite [-aeqx]; exact (mem_append_left _ aux))
(λ ainl₁ : a ∈ l₁,
have inl₁l₂ : (a, b) ∈ cross_product l₁ l₂, from mem_cross_product ainl₁ h₂,
mem_append_right _ inl₁l₂)
theorem mem_of_mem_cross_product_left {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ cross_product l₁ l₂ → a ∈ l₁
| [] l₂ h := absurd h !not_mem_nil
| (x::l₁) l₂ h :=
or.elim (mem_or_mem_of_mem_append h)
(λ ain : (a, b) ∈ map (λ b, (x, b)) l₂,
assert aeqx : a = x, from eq_of_mem_map_pair₁ ain,
by rewrite [aeqx]; exact !mem_cons)
(λ ain : (a, b) ∈ cross_product l₁ l₂,
have ainl₁ : a ∈ l₁, from mem_of_mem_cross_product_left ain,
mem_cons_of_mem _ ainl₁)
theorem mem_of_mem_cross_product_right {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ cross_product l₁ l₂ → b ∈ l₂
| [] l₂ h := absurd h !not_mem_nil
| (x::l₁) l₂ h :=
or.elim (mem_or_mem_of_mem_append h)
(λ abin : (a, b) ∈ map (λ b, (x, b)) l₂,
mem_of_mem_map_pair₁ abin)
(λ abin : (a, b) ∈ cross_product l₁ l₂,
mem_of_mem_cross_product_right abin)
end cross_product
end list
attribute list.decidable_any [instance]
attribute list.decidable_all [instance]