lean2/hott/algebra/category/adjoint.hlean

423 lines
16 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Properties of functors such as adjoint functors, equivalences, faithful or full functors
TODO: Split this file in different files
-/
import algebra.category.constructions function arity
open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv
namespace category
variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C}
-- TODO: define a structure "adjoint" and then define
-- structure is_left_adjoint (F : C ⇒ D) :=
-- (G : D ⇒ C) -- G
-- (is_adjoint : adjoint F G)
structure is_left_adjoint [class] (F : C ⇒ D) :=
(G : D ⇒ C)
(η : 1 ⟹ G ∘f F)
(ε : F ∘f G ⟹ 1)
(H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c))
(K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d))
abbreviation right_adjoint := @is_left_adjoint.G
abbreviation unit := @is_left_adjoint.η
abbreviation counit := @is_left_adjoint.ε
structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F :=
mk' ::
(is_iso_unit : is_iso η)
(is_iso_counit : is_iso ε)
abbreviation inverse := @is_equivalence.G
postfix ⁻¹ := inverse
--a second notation for the inverse, which is not overloaded
postfix [parsing_only] `⁻¹F`:std.prec.max_plus := inverse
--TODO: review and change
definition faithful [class] (F : C ⇒ D) := Π⦃c c' : C⦄ ⦃f f' : c ⟶ c'⦄, F f = F f' → f = f'
definition full [class] (F : C ⇒ D) := Π⦃c c' : C⦄, is_surjective (@(to_fun_hom F) c c')
definition fully_faithful [class] (F : C ⇒ D) := Π(c c' : C), is_equiv (@(to_fun_hom F) c c')
definition split_essentially_surjective [class] (F : C ⇒ D) := Π(d : D), Σ(c : C), F c ≅ d
definition essentially_surjective [class] (F : C ⇒ D) := Π(d : D), ∃(c : C), F c ≅ d
definition is_weak_equivalence [class] (F : C ⇒ D) := fully_faithful F × essentially_surjective F
definition is_isomorphism [class] (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F)
structure equivalence (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_equivalence to_functor)
structure isomorphism (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_isomorphism to_functor)
-- infix `⊣`:55 := adjoint
infix ` ⋍ `:25 := equivalence -- \backsimeq or \equiv
infix ` ≌ `:25 := isomorphism -- \backcong or \iso
definition is_equiv_of_fully_faithful [instance] [reducible] (F : C ⇒ D) [H : fully_faithful F]
(c c' : C) : is_equiv (@(to_fun_hom F) c c') :=
!H
definition hom_inv [reducible] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) (f : F c ⟶ F c')
: c ⟶ c' :=
(to_fun_hom F)⁻¹ᶠ f
definition hom_equiv_F_hom_F [constructor] (F : C ⇒ D)
[H : fully_faithful F] (c c' : C) : (c ⟶ c') ≃ (F c ⟶ F c') :=
equiv.mk _ !H
definition iso_of_F_iso_F (F : C ⇒ D)
[H : fully_faithful F] (c c' : C) (g : F c ≅ F c') : c ≅ c' :=
begin
induction g with g G, induction G with h p q, fapply iso.MK,
{ rexact (to_fun_hom F)⁻¹ᶠ g},
{ rexact (to_fun_hom F)⁻¹ᶠ h},
{ exact abstract begin
apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp, respect_id,
right_inv (to_fun_hom F), right_inv (to_fun_hom F), p],
end end},
{ exact abstract begin
apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp, respect_id,
right_inv (to_fun_hom F), right_inv (@(to_fun_hom F) c' c), q],
end end}
end
definition iso_equiv_F_iso_F [constructor] (F : C ⇒ D)
[H : fully_faithful F] (c c' : C) : (c ≅ c') ≃ (F c ≅ F c') :=
begin
fapply equiv.MK,
{ exact to_fun_iso F},
{ apply iso_of_F_iso_F},
{ exact abstract begin
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
esimp [iso_of_F_iso_F], apply right_inv end end},
{ exact abstract begin
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
esimp [iso_of_F_iso_F], apply right_inv end end},
end
definition is_iso_unit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (unit F) :=
!is_equivalence.is_iso_unit
definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) :=
!is_equivalence.is_iso_counit
theorem is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D)
: is_hprop (is_left_adjoint F) :=
begin
apply is_hprop.mk,
intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K',
assert lem₁ : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε'
→ is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K',
{ intros p q r, induction p, induction q, induction r, esimp,
apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim},
assert lem₂ : Π (d : carrier D),
(to_fun_hom G (natural_map ε' d) ∘
natural_map η (to_fun_ob G' d)) ∘
to_fun_hom G' (natural_map ε d) ∘
natural_map η' (to_fun_ob G d) = id,
{ intro d, esimp,
rewrite [assoc],
rewrite [-assoc (G (ε' d))],
esimp, rewrite [nf_fn_eq_fn_nf_pt' G' ε η d],
esimp, rewrite [assoc],
esimp, rewrite [-assoc],
rewrite [↑functor.compose, -respect_comp G],
rewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*],
rewrite [respect_comp G],
rewrite [assoc,▸*,-assoc (G (ε d))],
rewrite [↑functor.compose, -respect_comp G],
rewrite [H' (G d)],
rewrite [respect_id,▸*,id_right],
apply K},
assert lem₃ : Π (d : carrier D),
(to_fun_hom G' (natural_map ε d) ∘
natural_map η' (to_fun_ob G d)) ∘
to_fun_hom G (natural_map ε' d) ∘
natural_map η (to_fun_ob G' d) = id,
{ intro d, esimp,
rewrite [assoc, -assoc (G' (ε d))],
esimp, rewrite [nf_fn_eq_fn_nf_pt' G ε' η' d],
esimp, rewrite [assoc], esimp, rewrite [-assoc],
rewrite [↑functor.compose, -respect_comp G'],
rewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d)],
esimp,
rewrite [respect_comp G'],
rewrite [assoc,▸*,-assoc (G' (ε' d))],
rewrite [↑functor.compose, -respect_comp G'],
rewrite [H (G' d)],
rewrite [respect_id,▸*,id_right],
apply K'},
fapply lem₁,
{ fapply functor.eq_of_pointwise_iso,
{ fapply change_natural_map,
{ exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)},
{ intro d, exact (G' (ε d) ∘ η' (G d))},
{ intro d, exact ap (λx, _ ∘ x) !id_left}},
{ intro d, fconstructor,
{ exact (G (ε' d) ∘ η (G' d))},
{ exact lem₂ d },
{ exact lem₃ d }}},
{ clear lem₁, refine transport_hom_of_eq_right _ η ⬝ _,
krewrite hom_of_eq_compose_right,
rewrite functor.hom_of_eq_eq_of_pointwise_iso,
apply nat_trans_eq, intro c, esimp,
refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _,
esimp, rewrite [-respect_comp G',H c,respect_id G',▸*,id_left]},
{ clear lem₁, refine transport_hom_of_eq_left _ ε ⬝ _,
krewrite inv_of_eq_compose_left,
rewrite functor.inv_of_eq_eq_of_pointwise_iso,
apply nat_trans_eq, intro d, esimp,
krewrite [respect_comp],
rewrite [assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]}
end
definition full_of_fully_faithful (H : fully_faithful F) : full F :=
λc c' g, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv)
definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F :=
λc c' f f' p, is_injective_of_is_embedding p
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F :=
begin
intro c c',
apply is_equiv_of_is_surjective_of_is_embedding,
{ apply is_embedding_of_is_injective,
intros f f' p, exact H p},
{ apply K}
end
definition split_essentially_surjective_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F]
: split_essentially_surjective F :=
begin
intro d, fconstructor,
{ exact F⁻¹ d},
{ exact componentwise_iso (@(iso.mk (counit F)) !is_iso_counit) d}
end
definition reflect_is_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c')
[H : is_iso (F f)] : is_iso f :=
begin
fconstructor,
{ exact (to_fun_hom F)⁻¹ᶠ (F f)⁻¹},
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,left_inverse]},
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,right_inverse]},
end
definition reflect_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C}
(f : F c ≅ F c') : c ≅ c' :=
begin
fconstructor,
{ exact (to_fun_hom F)⁻¹ᶠ f},
{ assert H : is_iso (F ((to_fun_hom F)⁻¹ᶠ f)),
{ have H' : is_iso (to_hom f), from _, exact (right_inv (to_fun_hom F) (to_hom f))⁻¹ ▸ H'},
exact reflect_is_iso F _},
end
theorem reflect_inverse (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c')
[H : is_iso f] : (to_fun_hom F)⁻¹ᶠ (F f)⁻¹ = f⁻¹ :=
inverse_eq_inverse (idp : to_hom (@(iso.mk f) (reflect_is_iso F f)) = f)
end category
namespace category
section
parameters {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C} (η : G ∘f F ≅ 1) (ε : F ∘f G ≅ 1)
-- variables (η : Πc, G (F c) ≅ c) (ε : Πd, F (G d) ≅ d)
-- (pη : Π(c c' : C) (f : hom c c'), f ∘ to_hom (η c) = to_hom (η c') ∘ G (F f))
-- (pε : Π⦃d d' : D⦄ (f : hom d d'), f ∘ to_hom (ε d) = to_hom (ε d') ∘ F (G f))
private definition ηn : 1 ⟹ G ∘f F := to_inv η
private definition εn : F ∘f G ⟹ 1 := to_hom ε
private definition ηi (c : C) : G (F c) ≅ c := componentwise_iso η c
private definition εi (d : D) : F (G d) ≅ d := componentwise_iso ε d
private definition ηi' (c : C) : G (F c) ≅ c :=
to_fun_iso G (to_fun_iso F (ηi c)⁻¹ⁱ) ⬝i to_fun_iso G (εi (F c)) ⬝i ηi c
exit
set_option pp.implicit true
private theorem adj_η_natural {c c' : C} (f : hom c c')
: G (F f) ∘ to_inv (ηi' c) = to_inv (ηi c') ∘ f :=
let ηi'_nat : G ∘f F ⟹ 1 :=
/- 1 ⇐ G ∘f F :-/ to_hom η
∘n /- ... ⇐ (G ∘f 1) ∘f F :-/ hom_of_eq !functor.id_right ∘nf F
∘n /- ... ⇐ (G ∘f (F ∘f G)) ∘f F :-/ (G ∘fn εn) ∘nf F
∘n /- ... ⇐ ((G ∘f F) ∘f G) ∘f F :-/ hom_of_eq !functor.assoc⁻¹ ∘nf F
∘n /- ... ⇐ (G ∘f F) ∘f (G ∘f F) :-/ hom_of_eq !functor.assoc
∘n /- ... ⇐ (G ∘f F) ∘f 1 :-/ (G ∘f F) ∘fn ηn
∘n /- ... ⇐ G ∘f F :-/ hom_of_eq !functor.id_right⁻¹
in
have ηi'_nat ~ ηi', begin intro c, fold [precategory_functor C C]
/-rewrite [+natural_map_hom_of_eq],-/ end,
_
private theorem adjointify_adjH (c : C) :
to_hom (ε (F c)) ∘ F (to_hom (adj_η η ε c)⁻¹ⁱ) = id :=
begin
exact sorry
end
private theorem adjointify_adjK (d : D) :
G (to_hom (ε d)) ∘ to_hom (adj_η η ε (G d))⁻¹ⁱ = id :=
begin
exact sorry
end
attribute functor.id [reducible]
variables (F G)
definition is_equivalence.mk : is_equivalence F :=
begin
fapply is_equivalence.mk',
{ exact G},
{ fapply nat_trans.mk,
{ intro c, exact to_inv (adj_η η ε c)},
{ intro c c' f, exact adj_η_natural η ε pη pε f}},
{ fapply nat_trans.mk,
{ exact λd, to_hom (ε d)},
{ exact pε}},
{ exact adjointify_adjH η ε pη pε},
{ exact adjointify_adjK η ε pη pε},
{ exact @(is_iso_nat_trans _) (λc, !is_iso_inverse)},
{ apply is_iso_nat_trans},
end
end
definition is_equivalence.mk2 (η : G ∘f F ≅ 1) (ε : F ∘f G ≅ 1) : is_equivalence F :=
is_equivalence.mk F G
(componentwise_iso η) (componentwise_iso ε)
begin intro c c' f, esimp, apply naturality (to_hom η) f end
begin intro c c' f, esimp, apply naturality (to_hom ε) f end
exit
section
variables (η : G ∘f F ≅ 1) (ε : F ∘f G ≅ 1) -- we need some kind of naturality
include η ε
-- private definition adj_η : G ∘f F ≅ functor.id :=
-- change_inv
-- ( calc
-- G ∘f F ≅ (G ∘f F) ∘f 1 : iso_of_eq !functor.id_right
-- ... ≅ (G ∘f F) ∘f (G ∘f F) : _
-- ... ≅ G ∘f (F ∘f (G ∘f F)) : _
-- ... ≅ G ∘f ((F ∘f G) ∘f F) : _
-- ... ≅ G ∘f (1 ∘f F) : _
-- ... ≅ G ∘f F : _
-- ... ≅ 1 : η)
-- _
-- _ --change_natural_map _ _
--sorry --to_fun_iso G (to_fun_iso F (η c)⁻¹ⁱ) ⬝i to_fun_iso G (ε (F c)) ⬝i η c
open iso
-- definition nat_map_of_iso [reducible] {C D : Precategory} {F G : C ⇒ D} (η : F ≅ G) (c : C)
-- : F c ⟶ G c :=
-- natural_map (to_hom η) c
private theorem adjointify_adjH (c : C) :
natural_map (to_hom ε) (F c) ∘ F (natural_map (to_inv (adj_η η ε)) c) = id :=
begin
exact sorry
end
-- (H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c))
-- (K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d))
private theorem adjointify_adjK (d : D) :
G (natural_map (to_hom ε) d) ∘ natural_map (to_inv (adj_η η ε)) (G d) = id :=
begin
exact sorry
end
variables (F G)
definition is_equivalence.mk : is_equivalence F :=
begin
fapply is_equivalence.mk',
{ exact G},
{ exact to_inv (adj_η η ε)},
{ exact to_hom ε},
{ exact adjointify_adjH η ε},
{ exact adjointify_adjK η ε},
{ unfold to_inv, apply is_iso_inverse},
{ apply iso.struct},
end
end
/-
definition fully_faithful_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F]
: fully_faithful F :=
begin
intro c c',
fapply adjointify,
{ intro g, exact natural_map (@(iso.inverse (unit F)) !is_iso_unit) c' ∘ F⁻¹ g ∘ unit F c},
{ intro g, rewrite [+respect_comp,▸*],
krewrite [natural_map_inverse], xrewrite [respect_inv'],
apply inverse_comp_eq_of_eq_comp,
exact sorry /-this is basically the naturality of the counit-/ },
{ exact sorry},
end
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
sorry
definition is_equivalence_equiv (F : C ⇒ D)
: is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) :=
sorry
definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) :=
sorry
definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) :=
sorry
definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D)
: is_equivalence F ≃ is_weak_equivalence F :=
sorry
definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) :=
sorry
definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F
≃ Σ(G : D ⇒ C) (η : 1 = G ∘f F) (ε : F ∘f G = 1),
sorry ▸ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ :=
sorry
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
≃ ∃(G : D ⇒ C), 1 = G ∘f F × F ∘f G = 1 :=
sorry
definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F :=
sorry
definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F)
: is_isomorphism F :=
sorry
definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D :=
sorry
definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) :=
sorry
definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D :=
sorry
definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) :=
sorry
-/
end category