lean2/src/tests/kernel/normalize.cpp

258 lines
9.5 KiB
C++
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <algorithm>
#include <thread>
#include <chrono>
#include "exception.h"
#include "normalize.h"
#include "builtin.h"
#include "trace.h"
#include "test.h"
#include "expr_sets.h"
#include "abstract.h"
#include "kernel_exception.h"
#include "printer.h"
using namespace lean;
expr normalize(expr const & e) {
environment env;
return normalize(e, env);
}
static void eval(expr const & e, environment & env) { std::cout << e << " --> " << normalize(e, env) << "\n"; }
static expr t() { return Const("t"); }
static expr lam(expr const & e) { return mk_lambda("_", t(), e); }
static expr lam(expr const & t, expr const & e) { return mk_lambda("_", t, e); }
static expr v(unsigned i) { return Var(i); }
static expr zero() {
// fun (t : T) (s : t -> t) (z : t) z
return lam(t(), lam(mk_arrow(v(0), v(0)), lam(v(1), v(0))));
}
static expr one() {
// fun (t : T) (s : t -> t) s
return lam(t(), lam(mk_arrow(v(0), v(0)), v(0)));
}
static expr num() { return Const("num"); }
static expr plus() {
// fun (m n : numeral) (A : Type 0) (f : A -> A) (x : A) => m A f (n A f x).
expr x = v(0), f = v(1), A = v(2), n = v(3), m = v(4);
expr body = m(A, f, n(A, f, x));
return lam(num(), lam(num(), lam(t(), lam(mk_arrow(v(0), v(0)), lam(v(1), body)))));
}
static expr two() { return mk_app({plus(), one(), one()}); }
static expr three() { return mk_app({plus(), two(), one()}); }
static expr four() { return mk_app({plus(), two(), two()}); }
static expr times() {
// fun (m n : numeral) (A : Type 0) (f : A -> A) (x : A) => m A (n A f) x.
expr x = v(0), f = v(1), A = v(2), n = v(3), m = v(4);
expr body = m(A, n(A, f), x);
return lam(num(), lam(num(), lam(t(), lam(mk_arrow(v(0), v(0)), lam(v(1), body)))));
}
static expr power() {
// fun (m n : numeral) (A : Type 0) => m (A -> A) (n A).
expr A = v(0), n = v(1), m = v(2);
expr body = n(mk_arrow(A, A), m(A));
return lam(num(), lam(num(), lam(mk_arrow(v(0), v(0)), body)));
}
unsigned count_core(expr const & a, expr_set & s) {
if (s.find(a) != s.end())
return 0;
s.insert(a);
switch (a.kind()) {
case expr_kind::Var: case expr_kind::Constant: case expr_kind::Type: case expr_kind::Value:
return 1;
case expr_kind::App:
return std::accumulate(begin_args(a), end_args(a), 1,
[&](unsigned sum, expr const & arg){ return sum + count_core(arg, s); });
case expr_kind::Eq:
return count_core(eq_lhs(a), s) + count_core(eq_rhs(a), s) + 1;
case expr_kind::Lambda: case expr_kind::Pi:
return count_core(abst_domain(a), s) + count_core(abst_body(a), s) + 1;
case expr_kind::Let:
return count_core(let_value(a), s) + count_core(let_body(a), s) + 1;
}
return 0;
}
unsigned count(expr const & a) {
expr_set s;
return count_core(a, s);
}
static void tst_church_numbers() {
environment env;
env.add_var("t", Type());
env.add_var("N", Type());
env.add_var("z", Const("N"));
env.add_var("s", Const("N"));
expr N = Const("N");
expr z = Const("z");
expr s = Const("s");
std::cout << normalize(mk_app(zero(), N, s, z), env) << "\n";
std::cout << normalize(mk_app(one(), N, s, z), env) << "\n";
std::cout << normalize(mk_app(two(), N, s, z), env) << "\n";
std::cout << normalize(mk_app(four(), N, s, z), env) << "\n";
std::cout << count(normalize(mk_app(four(), N, s, z), env)) << "\n";
lean_assert(count(normalize(mk_app(four(), N, s, z), env)) == 4 + 2);
std::cout << normalize(mk_app(mk_app(times(), four(), four()), N, s, z), env) << "\n";
std::cout << normalize(mk_app(mk_app(power(), two(), four()), N, s, z), env) << "\n";
lean_assert(count(normalize(mk_app(mk_app(power(), two(), four()), N, s, z), env)) == 16 + 2);
std::cout << normalize(mk_app(mk_app(times(), two(), mk_app(power(), two(), four())), N, s, z), env) << "\n";
std::cout << count(normalize(mk_app(mk_app(times(), two(), mk_app(power(), two(), four())), N, s, z), env)) << "\n";
std::cout << count(normalize(mk_app(mk_app(times(), four(), mk_app(power(), two(), four())), N, s, z), env)) << "\n";
lean_assert(count(normalize(mk_app(mk_app(times(), four(), mk_app(power(), two(), four())), N, s, z), env)) == 64 + 2);
expr big = normalize(mk_app(mk_app(power(), two(), mk_app(power(), two(), three())), N, s, z), env);
std::cout << count(big) << "\n";
lean_assert(count(big) == 256 + 2);
expr three = mk_app(plus(), two(), one());
lean_assert(count(normalize(mk_app(mk_app(power(), three, three), N, s, z), env)) == 27 + 2);
// expr big2 = normalize(mk_app(mk_app(power(), two(), mk_app(times(), mk_app(plus(), four(), one()), four())), N, s, z), env);
// std::cout << count(big2) << "\n";
std::cout << normalize(lam(lam(mk_app(mk_app(times(), four(), four()), N, Var(0), z))), env) << "\n";
}
static void tst1() {
environment env;
env.add_var("t", Type());
expr t = Type();
env.add_var("f", mk_arrow(t, t));
expr f = Const("f");
env.add_var("a", t);
expr a = Const("a");
env.add_var("b", t);
expr b = Const("b");
expr x = Var(0);
expr y = Var(1);
eval(mk_app(mk_lambda("x", t, x), a), env);
eval(mk_app(mk_lambda("x", t, x), a, b), env);
eval(mk_lambda("x", t, f(x)), env);
eval(mk_lambda("y", t, mk_lambda("x", t, f(y, x))), env);
eval(mk_app(mk_lambda("x", t,
mk_app(mk_lambda("f", t,
mk_app(Var(0), b)),
mk_lambda("g", t, f(Var(1))))),
a), env);
expr l01 = lam(v(0)(v(1)));
expr l12 = lam(lam(v(1)(v(2))));
eval(lam(l12(l01)), env);
lean_assert(normalize(lam(l12(l01)), env) == lam(lam(v(1)(v(1)))));
}
static void tst2() {
environment env;
expr t = Type();
env.add_var("f", mk_arrow(t, t));
expr f = Const("f");
env.add_var("a", t);
expr a = Const("a");
env.add_var("b", t);
expr b = Const("b");
env.add_var("h", mk_arrow(t, t));
expr h = Const("h");
expr x = Var(0);
expr y = Var(1);
lean_assert(normalize(f(x,x), env, extend(context(), name("f"), t, f(a))) == f(f(a), f(a)));
context c1 = extend(extend(context(), name("f"), t, f(a)), name("h"), t, h(x));
expr F1 = normalize(f(x,f(x)), env, c1);
lean_assert(F1 == f(h(f(a)), f(h(f(a)))));
std::cout << F1 << "\n";
expr F2 = normalize(mk_lambda("x", t, f(x, f(y))), env, c1);
std::cout << F2 << "\n";
lean_assert(F2 == mk_lambda("x", t, f(x, f(h(f(a))))));
expr F3 = normalize(mk_lambda("y", t, mk_lambda("x", t, f(x, f(y)))), env, c1);
std::cout << F3 << "\n";
lean_assert(F3 == mk_lambda("y", t, mk_lambda("x", t, f(x, f(y)))));
context c2 = extend(extend(context(), name("foo"), t, mk_lambda("x", t, f(x, a))), name("bla"), t, mk_lambda("z", t, h(x,y)));
expr F4 = normalize(mk_lambda("x", t, f(x, f(y))), env, c2);
std::cout << F4 << "\n";
lean_assert(F4 == mk_lambda("x", t, f(x, f(mk_lambda("z", t, h(x,mk_lambda("x", t, f(x, a))))))));
context c3 = extend(context(), name("x"), t);
expr f5 = mk_app(mk_lambda("f", t, mk_lambda("z", t, Var(1))), mk_lambda("y", t, Var(1)));
expr F5 = normalize(f5, env, c3);
std::cout << f5 << "\n---->\n";
std::cout << F5 << "\n";
lean_assert(F5 == mk_lambda("z", t, mk_lambda("y", t, Var(2))));
context c4 = extend(extend(context(), name("x"), t), name("x2"), t);
expr F6 = normalize(mk_app(mk_lambda("f", t, mk_lambda("z1", t, mk_lambda("z2", t, mk_app(Var(2), Const("a"))))),
mk_lambda("y", t, mk_app(Var(1), Var(2), Var(0)))), env, c4);
std::cout << F6 << "\n";
lean_assert(F6 == mk_lambda("z1", t, mk_lambda("z2", t, mk_app(Var(2), Var(3), Const("a")))));
}
static void tst3() {
environment env;
env.add_var("a", Bool);
expr t1 = Const("a");
expr t2 = Const("a");
expr e = Eq(t1, t2);
std::cout << e << " --> " << normalize(e, env) << "\n";
lean_assert(normalize(e, env) == True);
}
static void tst4() {
environment env;
env.add_var("b", Type());
expr t1 = mk_let("a", Const("b"), mk_lambda("c", Type(), Var(1)(Var(0))));
std::cout << t1 << " --> " << normalize(t1, env) << "\n";
lean_assert(normalize(t1, env) == mk_lambda("c", Type(), Const("b")(Var(0))));
}
static expr mk_big(unsigned depth) {
if (depth == 0)
return Const("a");
else
return Const("f")(mk_big(depth - 1), mk_big(depth - 1));
}
static void tst5() {
#ifndef __APPLE__
expr t = mk_big(18);
environment env;
env.add_var("f", Bool >> (Bool >> Bool));
env.add_var("a", Bool);
normalizer proc(env);
std::chrono::milliseconds dura(50);
std::thread thread([&]() {
try {
proc(t);
// Remark: if the following code is reached, we
// should decrease dura.
lean_unreachable();
} catch (interrupted & it) {
std::cout << "interrupted\n";
}
});
std::this_thread::sleep_for(dura);
proc.interrupt();
thread.join();
#endif
}
void tst6() {
environment env;
expr x = Const("x");
expr t = Fun({x, Type()}, mk_app(x, x));
expr omega = mk_app(t, t);
normalizer proc(env, 512);
try {
proc(omega);
} catch (kernel_exception & ex) {
std::cout << ex.what() << "\n";
}
}
int main() {
tst_church_numbers();
tst1();
tst2();
tst3();
tst4();
tst5();
return has_violations() ? 1 : 0;
}