lean2/hott/algebra/category/constructions/functor.hlean

256 lines
9.3 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jakob von Raumer
Functor precategory and category
-/
import ..nat_trans ..category
open eq functor is_trunc nat_trans iso is_equiv
namespace category
definition precategory_functor [instance] [reducible] [constructor] (D C : Precategory)
: precategory (functor C D) :=
precategory.mk (λa b, nat_trans a b)
(λ a b c g f, nat_trans.compose g f)
(λ a, nat_trans.id)
(λ a b c d h g f, !nat_trans.assoc)
(λ a b f, !nat_trans.id_left)
(λ a b f, !nat_trans.id_right)
2015-09-02 19:41:19 -04:00
definition Precategory_functor [reducible] [constructor] (D C : Precategory) : Precategory :=
precategory.Mk (precategory_functor D C)
infixr `^c`:35 := Precategory_functor
section
/- we prove that if a natural transformation is pointwise an iso, then it is an iso -/
variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) [iso : Π(a : C), is_iso (η a)]
include iso
definition nat_trans_inverse [constructor] : G ⟹ F :=
nat_trans.mk
(λc, (η c)⁻¹)
(λc d f,
begin
apply comp_inverse_eq_of_eq_comp,
transitivity (natural_map η d)⁻¹ ∘ to_fun_hom G f ∘ natural_map η c,
{apply eq_inverse_comp_of_comp_eq, symmetry, apply naturality},
{apply assoc}
end)
definition nat_trans_left_inverse : nat_trans_inverse η ∘n η = nat_trans.id :=
begin
fapply (apd011 nat_trans.mk),
apply eq_of_homotopy, intro c, apply left_inverse,
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros,
apply is_hset.elim
end
definition nat_trans_right_inverse : η ∘n nat_trans_inverse η = nat_trans.id :=
begin
fapply (apd011 nat_trans.mk),
apply eq_of_homotopy, intro c, apply right_inverse,
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros,
apply is_hset.elim
end
definition is_iso_nat_trans [constructor] [instance] : is_iso η :=
is_iso.mk (nat_trans_left_inverse η) (nat_trans_right_inverse η)
variable (iso)
definition functor_iso [constructor] : F ≅ G :=
@(iso.mk η) !is_iso_nat_trans
end
section
/- and conversely, if a natural transformation is an iso, it is componentwise an iso -/
variables {A B C D : Precategory} {F G : D ^c C} (η : hom F G) [isoη : is_iso η] (c : C)
include isoη
definition componentwise_is_iso [instance] : is_iso (η c) :=
@is_iso.mk _ _ _ _ _ (natural_map η⁻¹ c) (ap010 natural_map ( left_inverse η) c)
(ap010 natural_map (right_inverse η) c)
local attribute componentwise_is_iso [instance]
variable {isoη}
definition natural_map_inverse : natural_map η⁻¹ c = (η c)⁻¹ := idp
variable [isoη]
definition naturality_iso {c c' : C} (f : c ⟶ c') : G f = η c' ∘ F f ∘ (η c)⁻¹ :=
calc
G f = (G f ∘ η c) ∘ (η c)⁻¹ : by rewrite comp_inverse_cancel_right
... = (η c' ∘ F f) ∘ (η c)⁻¹ : by rewrite naturality
... = η c' ∘ F f ∘ (η c)⁻¹ : by rewrite assoc
definition naturality_iso' {c c' : C} (f : c ⟶ c') : (η c')⁻¹ ∘ G f ∘ η c = F f :=
calc
(η c')⁻¹ ∘ G f ∘ η c = (η c')⁻¹ ∘ η c' ∘ F f : by rewrite naturality
... = F f : by rewrite inverse_comp_cancel_left
omit isoη
definition componentwise_iso (η : F ≅ G) (c : C) : F c ≅ G c :=
@iso.mk _ _ _ _ (natural_map (to_hom η) c)
(@componentwise_is_iso _ _ _ _ (to_hom η) (struct η) c)
definition componentwise_iso_id (c : C) : componentwise_iso (iso.refl F) c = iso.refl (F c) :=
iso_eq (idpath (ID (F c)))
definition componentwise_iso_iso_of_eq (p : F = G) (c : C)
: componentwise_iso (iso_of_eq p) c = iso_of_eq (ap010 to_fun_ob p c) :=
eq.rec_on p !componentwise_iso_id
definition natural_map_hom_of_eq (p : F = G) (c : C)
: natural_map (hom_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c) :=
eq.rec_on p idp
definition natural_map_inv_of_eq (p : F = G) (c : C)
: natural_map (inv_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c)⁻¹ :=
eq.rec_on p idp
definition hom_of_eq_compose_right {H : C ^c B} (p : F = G)
: hom_of_eq (ap (λx, x ∘f H) p) = hom_of_eq p ∘nf H :=
eq.rec_on p idp
definition inv_of_eq_compose_right {H : C ^c B} (p : F = G)
: inv_of_eq (ap (λx, x ∘f H) p) = inv_of_eq p ∘nf H :=
eq.rec_on p idp
definition hom_of_eq_compose_left {H : B ^c D} (p : F = G)
: hom_of_eq (ap (λx, H ∘f x) p) = H ∘fn hom_of_eq p :=
by induction p; exact !fn_id⁻¹
definition inv_of_eq_compose_left {H : B ^c D} (p : F = G)
: inv_of_eq (ap (λx, H ∘f x) p) = H ∘fn inv_of_eq p :=
by induction p; exact !fn_id⁻¹
definition assoc_natural [constructor] (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B)
: H ∘f (G ∘f F) ⟹ (H ∘f G) ∘f F :=
change_natural_map (hom_of_eq !functor.assoc)
(λa, id)
(λa, !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_assoc)
definition assoc_natural_rev [constructor] (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B)
: (H ∘f G) ∘f F ⟹ H ∘f (G ∘f F) :=
change_natural_map (inv_of_eq !functor.assoc)
(λa, id)
(λa, !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_assoc)
definition id_left_natural [constructor] (F : C ⇒ D) : functor.id ∘f F ⟹ F :=
change_natural_map
(hom_of_eq !functor.id_left)
(λc, id)
(λc, by induction F; exact !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_functor_mk_eq_constant)
definition id_left_natural_rev [constructor] (F : C ⇒ D) : F ⟹ functor.id ∘f F :=
change_natural_map
(inv_of_eq !functor.id_left)
(λc, id)
(λc, by induction F; exact !natural_map_inv_of_eq ⬝
ap (λx, hom_of_eq x⁻¹) !ap010_functor_mk_eq_constant)
definition id_right_natural [constructor] (F : C ⇒ D) : F ∘f functor.id ⟹ F :=
change_natural_map
(hom_of_eq !functor.id_right)
(λc, id)
(λc, by induction F; exact !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_functor_mk_eq_constant)
definition id_right_natural_rev [constructor] (F : C ⇒ D) : F ⟹ F ∘f functor.id :=
change_natural_map
(inv_of_eq !functor.id_right)
(λc, id)
(λc, by induction F; exact !natural_map_inv_of_eq ⬝
ap (λx, hom_of_eq x⁻¹) !ap010_functor_mk_eq_constant)
end
namespace functor
variables {C : Precategory} {D : Category} {F G : D ^c C}
definition eq_of_iso_ob (η : F ≅ G) (c : C) : F c = G c :=
by apply eq_of_iso; apply componentwise_iso; exact η
local attribute functor.to_fun_hom [quasireducible]
definition eq_of_iso (η : F ≅ G) : F = G :=
begin
fapply functor_eq,
{exact (eq_of_iso_ob η)},
{intro c c' f,
esimp [eq_of_iso_ob, inv_of_eq, hom_of_eq, eq_of_iso],
rewrite [*right_inv iso_of_eq],
symmetry, apply @naturality_iso _ _ _ _ _ (iso.struct _)
}
end
definition iso_of_eq_eq_of_iso (η : F ≅ G) : iso_of_eq (eq_of_iso η) = η :=
begin
apply iso_eq,
apply nat_trans_eq,
intro c,
rewrite natural_map_hom_of_eq, esimp [eq_of_iso],
rewrite ap010_functor_eq, esimp [hom_of_eq,eq_of_iso_ob],
rewrite (right_inv iso_of_eq),
end
definition eq_of_iso_iso_of_eq (p : F = G) : eq_of_iso (iso_of_eq p) = p :=
begin
apply functor_eq2,
intro c,
esimp [eq_of_iso],
rewrite ap010_functor_eq,
esimp [eq_of_iso_ob],
rewrite componentwise_iso_iso_of_eq,
rewrite (left_inv iso_of_eq)
end
definition is_univalent (D : Category) (C : Precategory) : is_univalent (D ^c C) :=
λF G, adjointify _ eq_of_iso
iso_of_eq_eq_of_iso
eq_of_iso_iso_of_eq
end functor
definition category_functor [instance] [constructor] (D : Category) (C : Precategory)
: category (D ^c C) :=
category.mk (D ^c C) (functor.is_univalent D C)
definition Category_functor [constructor] (D : Category) (C : Precategory) : Category :=
category.Mk (D ^c C) !category_functor
--this definition is only useful if the exponent is a category,
-- and the elaborator has trouble with inserting the coercion
definition Category_functor' [constructor] (D C : Category) : Category :=
Category_functor D C
namespace ops
infixr `^c2`:35 := Category_functor
end ops
namespace functor
variables {C : Precategory} {D : Category} {F G : D ^c C}
definition eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(a : C), is_iso (η a)) : F = G :=
eq_of_iso (functor_iso η iso)
definition iso_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c))
: iso_of_eq (eq_of_pointwise_iso η iso) = functor_iso η iso :=
!iso_of_eq_eq_of_iso
definition hom_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c))
: hom_of_eq (eq_of_pointwise_iso η iso) = η :=
!hom_of_eq_eq_of_iso
definition inv_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c))
: inv_of_eq (eq_of_pointwise_iso η iso) = nat_trans_inverse η :=
!inv_of_eq_eq_of_iso
end functor
end category