lean2/src/frontends/lean/builtin_cmds.cpp

1613 lines
61 KiB
C++
Raw Normal View History

/*
Copyright (c) 2014-2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <algorithm>
#include <string>
#include "util/sstream.h"
#include "util/sexpr/option_declarations.h"
#include "kernel/type_checker.h"
#include "kernel/abstract.h"
#include "kernel/instantiate.h"
#include "kernel/for_each_fn.h"
#include "kernel/inductive/inductive.h"
#include "kernel/quotient/quotient.h"
#include "kernel/hits/hits.h"
#include "kernel/default_converter.h"
#include "library/io_state_stream.h"
#include "library/scoped_ext.h"
#include "library/aliases.h"
#include "library/protected.h"
#include "library/locals.h"
#include "library/coercion.h"
#include "library/constants.h"
#include "library/light_lt_manager.h"
#include "library/normalize.h"
#include "library/print.h"
#include "library/noncomputable.h"
#include "library/class.h"
#include "library/flycheck.h"
#include "library/abbreviation.h"
#include "library/util.h"
#include "library/user_recursors.h"
#include "library/pp_options.h"
#include "library/composition_manager.h"
#include "library/aux_recursors.h"
#include "library/projection.h"
#include "library/attribute_manager.h"
#include "library/private.h"
#include "library/decl_stats.h"
#include "library/app_builder.h"
#include "library/meng_paulson.h"
#include "library/fun_info_manager.h"
#include "library/congr_lemma_manager.h"
#include "library/abstract_expr_manager.h"
#include "library/definitional/projection.h"
#include "library/blast/blast.h"
#include "library/blast/simplifier/simplifier.h"
#include "library/blast/backward/backward_rule_set.h"
#include "library/blast/forward/pattern.h"
#include "library/blast/forward/forward_lemma_set.h"
#include "library/blast/grinder/intro_elim_lemmas.h"
#include "compiler/preprocess_rec.h"
#include "frontends/lean/util.h"
#include "frontends/lean/parser.h"
#include "frontends/lean/calc.h"
#include "frontends/lean/notation_cmd.h"
#include "frontends/lean/inductive_cmd.h"
#include "frontends/lean/structure_cmd.h"
#include "frontends/lean/find_cmd.h"
#include "frontends/lean/begin_end_ext.h"
#include "frontends/lean/decl_cmds.h"
#include "frontends/lean/tactic_hint.h"
#include "frontends/lean/tokens.h"
#include "frontends/lean/parse_table.h"
namespace lean {
static void print_coercions(parser & p, optional<name> const & C) {
environment const & env = p.env();
options opts = p.regular_stream().get_options();
opts = opts.update(get_pp_coercions_name(), true);
io_state_stream out = p.regular_stream().update_options(opts);
char const * arrow = get_pp_unicode(opts) ? "" : ">->";
for_each_coercion_user(env, [&](name const & C1, name const & c, name const & D) {
if (!C || *C == C1)
out << C1 << " " << arrow << " " << D << " : " << c << endl;
});
for_each_coercion_sort(env, [&](name const & C1, name const & c) {
if (!C || *C == C1)
out << C1 << " " << arrow << " [sort-class] : " << c << endl;
});
for_each_coercion_fun(env, [&](name const & C1, name const & c) {
if (!C || *C == C1)
out << C1 << " " << arrow << " [fun-class] : " << c << endl;
});
}
struct print_axioms_deps {
environment m_env;
io_state_stream m_ios;
name_set m_visited;
bool m_use_axioms;
print_axioms_deps(environment const & env, io_state_stream const & ios):
m_env(env), m_ios(ios), m_use_axioms(false) {}
void visit(name const & n) {
if (m_visited.contains(n))
return;
m_visited.insert(n);
declaration const & d = m_env.get(n);
if (!d.is_definition() && !m_env.is_builtin(n)) {
m_use_axioms = true;
m_ios << d.get_name() << "\n";
}
visit(d.get_type());
if (d.is_definition())
visit(d.get_value());
}
void visit(expr const & e) {
for_each(e, [&](expr const & e, unsigned) {
if (is_constant(e))
visit(const_name(e));
return true;
});
}
void operator()(name const & n) {
visit(n);
if (!m_use_axioms)
m_ios << "no axioms" << endl;
}
};
static environment print_axioms(parser & p) {
if (p.curr_is_identifier()) {
name c = p.check_constant_next("invalid 'print axioms', constant expected");
environment new_env = p.reveal_all_theorems();
print_axioms_deps(p.env(), p.regular_stream())(c);
return new_env;
} else {
bool has_axioms = false;
environment const & env = p.env();
env.for_each_declaration([&](declaration const & d) {
name const & n = d.get_name();
if (!d.is_definition() && !env.is_builtin(n) && !p.in_theorem_queue(n)) {
p.regular_stream() << n << " : " << d.get_type() << endl;
has_axioms = true;
}
});
if (!has_axioms)
p.regular_stream() << "no axioms" << endl;
return p.env();
}
}
static void print_prefix(parser & p) {
name prefix = p.check_id_next("invalid 'print prefix' command, identifier expected");
environment const & env = p.env();
buffer<declaration> to_print;
env.for_each_declaration([&](declaration const & d) {
if (is_prefix_of(prefix, d.get_name())) {
to_print.push_back(d);
}
});
std::sort(to_print.begin(), to_print.end(), [](declaration const & d1, declaration const & d2) { return d1.get_name() < d2.get_name(); });
for (declaration const & d : to_print) {
p.regular_stream() << d.get_name() << " : " << d.get_type() << endl;
}
if (to_print.empty())
p.regular_stream() << "no declaration starting with prefix '" << prefix << "'" << endl;
}
static void print_fields(parser const & p, name const & S, pos_info const & pos) {
environment const & env = p.env();
if (!is_structure(env, S))
throw parser_error(sstream() << "invalid 'print fields' command, '" << S << "' is not a structure", pos);
buffer<name> field_names;
get_structure_fields(env, S, field_names);
for (name const & field_name : field_names) {
declaration d = env.get(field_name);
p.regular_stream() << d.get_name() << " : " << d.get_type() << endl;
}
}
static bool uses_token(unsigned num, notation::transition const * ts, name const & token) {
for (unsigned i = 0; i < num; i++) {
if (ts[i].get_token() == token)
return true;
}
return false;
}
static bool uses_some_token(unsigned num, notation::transition const * ts, buffer<name> const & tokens) {
return
tokens.empty() ||
std::any_of(tokens.begin(), tokens.end(), [&](name const & token) { return uses_token(num, ts, token); });
}
static bool print_parse_table(parser const & p, parse_table const & t, bool nud, buffer<name> const & tokens, bool tactic_table = false) {
bool found = false;
io_state ios = p.ios();
options os = ios.get_options();
os = os.update_if_undef(get_pp_full_names_name(), true);
os = os.update(get_pp_notation_name(), false);
os = os.update(get_pp_preterm_name(), true);
ios.set_options(os);
optional<token_table> tt(get_token_table(p.env()));
t.for_each([&](unsigned num, notation::transition const * ts, list<notation::accepting> const & overloads) {
if (uses_some_token(num, ts, tokens)) {
io_state_stream out = regular(p.env(), ios);
if (tactic_table)
out << "tactic notation ";
found = true;
notation::display(out, num, ts, overloads, nud, tt);
}
});
return found;
}
static void print_notation(parser & p) {
buffer<name> tokens;
while (p.curr_is_keyword()) {
tokens.push_back(p.get_token_info().token());
p.next();
}
bool found = false;
if (print_parse_table(p, get_nud_table(p.env()), true, tokens))
found = true;
if (print_parse_table(p, get_led_table(p.env()), false, tokens))
found = true;
if (!found)
p.regular_stream() << "no notation" << endl;
}
static void print_metaclasses(parser const & p) {
buffer<name> c;
get_metaclasses(c);
for (name const & n : c)
p.regular_stream() << "[" << n << "]" << endl;
}
static void print_patterns(parser & p, name const & n) {
if (is_forward_lemma(p.env(), n)) {
// we regenerate the patterns to make sure they reflect the current set of reducible constants
try {
blast::scope_debug scope(p.env(), p.ios());
auto hi = blast::mk_hi_lemma(n, LEAN_FORWARD_DEFAULT_PRIORITY);
if (hi.m_multi_patterns) {
io_state_stream _out = p.regular_stream();
options opts = _out.get_options();
opts = opts.update_if_undef(get_pp_metavar_args_name(), true);
io_state_stream out = _out.update_options(opts);
out << "(multi-)patterns:\n";
if (!is_nil(hi.m_mvars)) {
expr m = head(hi.m_mvars);
out << m << " : " << mlocal_type(m);
for (expr const & m : tail(hi.m_mvars)) {
out << ", " << m << " : " << mlocal_type(m);
}
}
out << "\n";
for (multi_pattern const & mp : hi.m_multi_patterns) {
out << "{";
bool first = true;
for (expr const & p : mp) {
if (first) first = false; else out << ", ";
out << p;
}
out << "}\n";
}
}
} catch (exception & ex) {
p.display_error(ex);
}
}
}
static name to_user_name(environment const & env, name const & n) {
if (auto r = hidden_to_user_name(env, n))
return *r;
else
return n;
}
static void print_definition(parser const & p, name const & n, pos_info const & pos) {
environment const & env = p.env();
declaration d = env.get(n);
io_state_stream out = p.regular_stream();
options opts = out.get_options();
opts = opts.update_if_undef(get_pp_beta_name(), false);
io_state_stream new_out = out.update_options(opts);
if (d.is_axiom())
throw parser_error(sstream() << "invalid 'print definition', theorem '" << to_user_name(env, n)
<< "' is not available (suggestion: use command 'reveal " << to_user_name(env, n) << "')", pos);
if (!d.is_definition())
throw parser_error(sstream() << "invalid 'print definition', '" << to_user_name(env, n) << "' is not a definition", pos);
new_out << d.get_value() << endl;
}
static void print_attributes(parser const & p, name const & n) {
environment const & env = p.env();
io_state_stream out = p.regular_stream();
buffer<char const *> attrs;
get_attributes(attrs);
for (char const * attr : attrs) {
if (strcmp(attr, "semireducible") == 0)
continue;
if (has_attribute(env, attr, n)) {
out << " " << get_attribute_token(attr);
switch (get_attribute_kind(attr)) {
case attribute_kind::Default:
break;
case attribute_kind::Prioritized: {
unsigned prio = get_attribute_prio(env, attr, n);
if (prio != LEAN_DEFAULT_PRIORITY)
out << " [priority " << prio << "]";
break;
}
case attribute_kind::Parametric:
case attribute_kind::OptParametric:
out << " " << get_attribute_param(env, attr, n) << "]";
break;
case attribute_kind::MultiParametric: {
list<unsigned> ps = get_attribute_params(env, attr, n);
for (auto p : ps) {
out << " " << p;
}
out << "]";
break;
}}
}
}
}
static void print_inductive(parser const & p, name const & n, pos_info const & pos) {
environment const & env = p.env();
io_state_stream out = p.regular_stream();
if (auto idecls = inductive::is_inductive_decl(env, n)) {
level_param_names ls; unsigned nparams; list<inductive::inductive_decl> dlist;
std::tie(ls, nparams, dlist) = *idecls;
if (is_structure(env, n))
out << "structure";
else
out << "inductive";
out << " " << n;
print_attributes(p, n);
out << " : " << env.get(n).get_type() << "\n";
if (is_structure(env, n)) {
out << "fields:\n";
print_fields(p, n, pos);
} else {
out << "constructors:\n";
buffer<name> constructors;
get_intro_rule_names(env, n, constructors);
for (name const & c : constructors) {
out << c << " : " << env.get(c).get_type() << "\n";
}
}
} else {
throw parser_error(sstream() << "invalid 'print inductive', '" << n << "' is not an inductive declaration", pos);
}
}
static void print_recursor_info(parser & p) {
name c = p.check_constant_next("invalid 'print [recursor]', constant expected");
auto out = p.regular_stream();
recursor_info info = get_recursor_info(p.env(), c);
out << "recursor information\n"
<< " num. parameters: " << info.get_num_params() << "\n"
<< " num. indices: " << info.get_num_indices() << "\n"
<< " num. minors: " << info.get_num_minors() << "\n"
<< " recursive: " << info.is_recursive() << "\n"
<< " universe param pos.: ";
for (unsigned idx : info.get_universe_pos()) {
if (idx == recursor_info::get_motive_univ_idx()) {
out << " [motive univ]";
} else {
out << " " << idx;
}
}
out << "\n";
out << " motive pos.: " << info.get_motive_pos() + 1 << "\n"
<< " major premise pos.: " << info.get_major_pos() + 1 << "\n"
<< " dep. elimination: " << info.has_dep_elim() << "\n";
if (info.get_num_params() > 0) {
out << " parameters pos. at major:";
for (optional<unsigned> const & p : info.get_params_pos()) {
if (p)
out << " " << *p+1;
else
out << " [instance]";
}
out << "\n";
}
if (info.get_num_indices() > 0) {
out << " indices pos. at major: ";
for (unsigned p : info.get_indices_pos())
out << " " << p+1;
out << "\n";
}
}
static bool print_constant(parser const & p, char const * kind, declaration const & d, bool is_def = false) {
io_state_stream out = p.regular_stream();
if (d.is_definition() && is_marked_noncomputable(p.env(), d.get_name()))
out << "noncomputable ";
if (is_protected(p.env(), d.get_name()))
out << "protected ";
out << kind << " " << to_user_name(p.env(), d.get_name());
print_attributes(p, d.get_name());
out << " : " << d.get_type();
if (is_def)
out << " :=";
out << "\n";
return true;
}
bool print_id_info(parser & p, name const & id, bool show_value, pos_info const & pos) {
// declarations
try {
environment const & env = p.env();
io_state_stream out = p.regular_stream();
try {
list<name> cs = p.to_constants(id, "", pos);
bool first = true;
for (name const & c : cs) {
if (first) first = false; else out << "\n";
declaration const & d = env.get(c);
if (d.is_theorem()) {
print_constant(p, "theorem", d, show_value);
if (show_value)
print_definition(p, c, pos);
} else if (d.is_axiom() || d.is_constant_assumption()) {
if (inductive::is_inductive_decl(env, c)) {
print_inductive(p, c, pos);
} else if (inductive::is_intro_rule(env, c)) {
print_constant(p, "constructor", d);
} else if (inductive::is_elim_rule(env, c)) {
print_constant(p, "eliminator", d);
} else if (is_quotient_decl(env, c)) {
print_constant(p, "builtin-quotient-type-constant", d);
} else if (is_hits_decl(env, c)) {
print_constant(p, "builtin-HIT-constant", d);
} else if (d.is_axiom()) {
if (p.in_theorem_queue(d.get_name())) {
print_constant(p, "theorem", d);
if (show_value) {
out << "'" << to_user_name(env, d.get_name()) << "' is still in the theorem queue, use command 'reveal "
<< to_user_name(env, d.get_name()) << "' to access its definition.\n";
}
} else {
print_constant(p, "axiom", d);
}
} else {
print_constant(p, "constant", d);
}
} else if (d.is_definition()) {
print_constant(p, "definition", d, show_value);
if (show_value)
print_definition(p, c, pos);
}
print_patterns(p, c);
}
return true;
} catch (exception & ex) {}
// variables and parameters
if (expr const * type = p.get_local(id)) {
if (is_local(*type)) {
if (p.is_local_variable(*type)) {
out << "variable " << id << " : " << mlocal_type(*type) << "\n";
} else {
out << "parameter " << id << " : " << mlocal_type(*type) << "\n";
}
return true;
}
}
// options
for (auto odecl : get_option_declarations()) {
auto opt = odecl.second;
if (opt.get_name() == id || opt.get_name() == name("lean") + id) {
out << "option " << opt.get_name() << " (" << opt.kind() << ") "
<< opt.get_description() << " (default: " << opt.get_default_value() << ")" << endl;
return true;
}
}
} catch (exception &) {}
return false;
}
bool print_token_info(parser const & p, name const & tk) {
buffer<name> tokens;
tokens.push_back(tk);
bool found = false;
if (print_parse_table(p, get_nud_table(p.env()), true, tokens)) {
found = true;
}
if (print_parse_table(p, get_led_table(p.env()), false, tokens)) {
found = true;
}
bool tactic_table = true;
if (print_parse_table(p, get_tactic_nud_table(p.env()), true, tokens, tactic_table)) {
found = true;
}
if (print_parse_table(p, get_tactic_led_table(p.env()), false, tokens, tactic_table)) {
found = true;
}
return found;
}
bool print_polymorphic(parser & p) {
auto pos = p.pos();
try {
name id = p.check_id_next("");
bool show_value = true;
if (print_id_info(p, id, show_value, pos))
return true;
} catch (exception &) {}
// notation
if (p.curr_is_keyword()) {
name tk = p.get_token_info().token();
if (print_token_info(p, tk)) {
p.next();
return true;
}
}
return false;
}
static void print_reducible_info(parser & p, reducible_status s1) {
buffer<name> r;
for_each_reducible(p.env(), [&](name const & n, reducible_status s2) {
if (s1 == s2)
r.push_back(n);
});
io_state_stream out = p.regular_stream();
std::sort(r.begin(), r.end());
for (name const & n : r)
out << n << "\n";
}
static void print_simp_rules(parser & p) {
io_state_stream out = p.regular_stream();
simp_rule_sets s;
name ns;
if (p.curr_is_identifier()) {
ns = p.get_name_val();
p.next();
s = get_simp_rule_sets(p.env(), p.get_options(), ns);
} else {
s = get_simp_rule_sets(p.env());
}
format header;
if (!ns.is_anonymous())
header = format(" at namespace '") + format(ns) + format("'");
out << s.pp_simp(out.get_formatter(), header);
}
static void print_congr_rules(parser & p) {
io_state_stream out = p.regular_stream();
simp_rule_sets s = get_simp_rule_sets(p.env());
out << s.pp_congr(out.get_formatter());
}
static void print_light_rules(parser & p) {
io_state_stream out = p.regular_stream();
light_rule_set lrs = get_light_rule_set(p.env());
out << lrs;
}
static void print_elim_lemmas(parser & p) {
buffer<name> lemmas;
get_elim_lemmas(p.env(), lemmas);
for (auto n : lemmas)
p.regular_stream() << n << "\n";
}
static void print_intro_lemmas(parser & p) {
buffer<name> lemmas;
get_intro_lemmas(p.env(), lemmas);
for (auto n : lemmas)
p.regular_stream() << n << "\n";
}
static void print_backward_rules(parser & p) {
io_state_stream out = p.regular_stream();
blast::backward_rule_set brs = get_backward_rule_set(p.env());
out << brs;
}
static void print_no_patterns(parser & p) {
io_state_stream out = p.regular_stream();
auto s = get_no_patterns(p.env());
buffer<name> ns;
s.to_buffer(ns);
std::sort(ns.begin(), ns.end());
for (unsigned i = 0; i < ns.size(); i++) {
if (i > 0) out << ", ";
out << ns[i];
}
out << "\n";
}
static void print_aliases(parser const & p) {
io_state_stream out = p.regular_stream();
for_each_expr_alias(p.env(), [&](name const & n, list<name> const & as) {
out << n << " -> {";
bool first = true;
for (name const & a : as) {
if (first) first = false; else out << ", ";
out << a;
}
out << "}\n";
});
}
environment print_cmd(parser & p) {
flycheck_information info(p.regular_stream());
if (info.enabled()) {
p.display_information_pos(p.cmd_pos());
p.regular_stream() << "print result:\n";
}
if (p.curr() == scanner::token_kind::String) {
p.regular_stream() << p.get_str_val() << endl;
p.next();
} else if (p.curr_is_token_or_id(get_raw_tk())) {
p.next();
expr e = p.parse_expr();
io_state_stream out = p.regular_stream();
options opts = out.get_options();
opts = opts.update(get_pp_notation_name(), false);
out.update_options(opts) << e << endl;
} else if (p.curr_is_token_or_id(get_no_pattern_attr_tk())) {
p.next();
print_no_patterns(p);
} else if (p.curr_is_token_or_id(get_reducible_tk())) {
p.next();
print_reducible_info(p, reducible_status::Reducible);
} else if (p.curr_is_token_or_id(get_quasireducible_tk())) {
p.next();
print_reducible_info(p, reducible_status::Quasireducible);
} else if (p.curr_is_token_or_id(get_irreducible_tk())) {
p.next();
print_reducible_info(p, reducible_status::Irreducible);
} else if (p.curr_is_token_or_id(get_options_tk())) {
p.next();
p.regular_stream() << p.ios().get_options() << endl;
} else if (p.curr_is_token_or_id(get_trust_tk())) {
p.next();
p.regular_stream() << "trust level: " << p.env().trust_lvl() << endl;
} else if (p.curr_is_token_or_id(get_definition_tk())) {
p.next();
auto pos = p.pos();
name id = p.check_id_next("invalid 'print definition', constant expected");
list<name> cs = p.to_constants(id, "invalid 'print definition', constant expected", pos);
bool first = true;
for (name const & c : cs) {
if (first)
first = false;
else
p.regular_stream() << "\n";
declaration const & d = p.env().get(c);
if (d.is_theorem()) {
print_constant(p, "theorem", d);
print_definition(p, c, pos);
} else if (d.is_definition()) {
print_constant(p, "definition", d);
print_definition(p, c, pos);
} else {
throw parser_error(sstream() << "invalid 'print definition', '" << to_user_name(p.env(), c) << "' is not a definition", pos);
}
}
} else if (p.curr_is_token_or_id(get_instances_tk())) {
p.next();
name c = p.check_constant_next("invalid 'print instances', constant expected");
environment const & env = p.env();
for (name const & i : get_class_instances(env, c)) {
p.regular_stream() << i << " : " << env.get(i).get_type() << endl;
}
if (list<name> derived_insts = get_class_derived_trans_instances(env, c)) {
p.regular_stream() << "Derived transitive instances:\n";
for (name const & i : derived_insts) {
p.regular_stream() << i << " : " << env.get(i).get_type() << endl;
}
}
} else if (p.curr_is_token_or_id(get_classes_tk())) {
p.next();
environment const & env = p.env();
buffer<name> classes;
get_classes(env, classes);
std::sort(classes.begin(), classes.end());
for (name const & c : classes) {
p.regular_stream() << c << " : " << env.get(c).get_type() << endl;
}
} else if (p.curr_is_token_or_id(get_prefix_tk())) {
p.next();
print_prefix(p);
} else if (p.curr_is_token_or_id(get_aliases_tk())) {
p.next();
print_aliases(p);
} else if (p.curr_is_token_or_id(get_coercions_tk())) {
p.next();
optional<name> C;
if (p.curr_is_identifier())
C = p.check_constant_next("invalid 'print coercions', constant expected");
print_coercions(p, C);
} else if (p.curr_is_token_or_id(get_metaclasses_tk())) {
p.next();
print_metaclasses(p);
} else if (p.curr_is_token_or_id(get_axioms_tk())) {
p.next();
return print_axioms(p);
} else if (p.curr_is_token_or_id(get_fields_tk())) {
p.next();
auto pos = p.pos();
name S = p.check_constant_next("invalid 'print fields' command, constant expected");
print_fields(p, S, pos);
} else if (p.curr_is_token_or_id(get_notation_tk())) {
p.next();
print_notation(p);
} else if (p.curr_is_token_or_id(get_inductive_tk())) {
p.next();
auto pos = p.pos();
name c = p.check_constant_next("invalid 'print inductive', constant expected");
print_inductive(p, c, pos);
} else if (p.curr_is_token(get_recursor_tk())) {
p.next();
p.check_token_next(get_rbracket_tk(), "invalid 'print [recursor]', ']' expected");
print_recursor_info(p);
} else if (p.curr_is_token(get_simp_attr_tk())) {
p.next();
print_simp_rules(p);
} else if (p.curr_is_token(get_intro_bang_attr_tk())) {
p.next();
print_intro_lemmas(p);
} else if (p.curr_is_token(get_elim_attr_tk())) {
p.next();
print_elim_lemmas(p);
} else if (p.curr_is_token(get_congr_attr_tk())) {
p.next();
print_congr_rules(p);
} else if (p.curr_is_token(get_light_attr_tk())) {
p.next();
p.check_token_next(get_rbracket_tk(), "invalid 'print [light]', ']' expected");
print_light_rules(p);
} else if (p.curr_is_token(get_intro_attr_tk())) {
p.next();
print_backward_rules(p);
} else if (print_polymorphic(p)) {
} else {
throw parser_error("invalid print command", p.pos());
}
return p.env();
}
environment section_cmd(parser & p) {
name n;
if (p.curr_is_identifier())
n = p.check_atomic_id_next("invalid section, atomic identifier expected");
p.push_local_scope();
return push_scope(p.env(), p.ios(), scope_kind::Section, n);
}
environment namespace_cmd(parser & p) {
auto pos = p.pos();
name n = p.check_atomic_id_next("invalid namespace declaration, atomic identifier expected");
if (is_root_namespace(n))
throw parser_error(sstream() << "invalid namespace name, '" << n << "' is reserved", pos);
p.push_local_scope();
return push_scope(p.env(), p.ios(), scope_kind::Namespace, n);
}
static environment redeclare_aliases(environment env, parser & p,
list<pair<name, level>> old_level_entries,
list<pair<name, expr>> old_entries) {
environment const & old_env = p.env();
if (!in_section(old_env))
return env;
list<pair<name, expr>> new_entries = p.get_local_entries();
buffer<pair<name, expr>> to_redeclare;
2015-06-04 04:40:03 +00:00
unsigned new_len = length(new_entries);
unsigned old_len = length(old_entries);
lean_assert(old_len >= new_len);
name_set popped_locals;
2015-06-04 04:40:03 +00:00
while (old_len > new_len) {
pair<name, expr> entry = head(old_entries);
if (is_local_ref(entry.second))
to_redeclare.push_back(entry);
else if (is_local(entry.second))
popped_locals.insert(mlocal_name(entry.second));
old_entries = tail(old_entries);
2015-06-04 04:40:03 +00:00
old_len--;
}
name_set popped_levels;
list<pair<name, level>> new_level_entries = p.get_local_level_entries();
while (!is_eqp(old_level_entries, new_level_entries)) {
level const & l = head(old_level_entries).second;
if (is_param(l))
popped_levels.insert(param_id(l));
old_level_entries = tail(old_level_entries);
}
for (auto const & entry : to_redeclare) {
expr new_ref = update_local_ref(entry.second, popped_levels, popped_locals);
if (!is_constant(new_ref))
env = p.add_local_ref(env, entry.first, new_ref);
}
return env;
}
environment end_scoped_cmd(parser & p) {
list<pair<name, level>> level_entries = p.get_local_level_entries();
list<pair<name, expr>> entries = p.get_local_entries();
p.pop_local_scope();
if (p.curr_is_identifier()) {
name n = p.check_atomic_id_next("invalid end of scope, atomic identifier expected");
environment env = pop_scope(p.env(), p.ios(), n);
return redeclare_aliases(env, p, level_entries, entries);
} else {
environment env = pop_scope(p.env(), p.ios());
return redeclare_aliases(env, p, level_entries, entries);
}
}
environment check_cmd(parser & p) {
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
e = expand_abbreviations(p.env(), e);
auto tc = mk_type_checker(p.env(), p.mk_ngen());
expr type = tc->check(e, ls).first;
auto reg = p.regular_stream();
formatter fmt = reg.get_formatter();
options opts = p.ios().get_options();
opts = opts.update_if_undef(get_pp_metavar_args_name(), true);
fmt = fmt.update_options(opts);
unsigned indent = get_pp_indent(opts);
format r = group(fmt(e) + space() + colon() + nest(indent, line() + fmt(type)));
flycheck_information info(p.regular_stream());
if (info.enabled()) {
p.display_information_pos(p.cmd_pos());
p.regular_stream() << "check result:\n";
}
reg << mk_pair(r, opts) << endl;
return p.env();
}
environment eval_cmd(parser & p) {
bool whnf = false;
if (p.curr_is_token(get_whnf_tk())) {
p.next();
whnf = true;
}
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
expr r;
if (whnf) {
auto tc = mk_type_checker(p.env(), p.mk_ngen());
r = tc->whnf(e).first;
} else {
type_checker tc(p.env());
bool eta = false;
bool eval_nested_prop = false;
r = normalize(tc, ls, e, eta, eval_nested_prop);
}
flycheck_information info(p.regular_stream());
if (info.enabled()) {
p.display_information_pos(p.cmd_pos());
p.regular_stream() << "eval result:\n";
}
p.regular_stream() << r << endl;
return p.env();
}
environment exit_cmd(parser & p) {
flycheck_warning wrn(p.regular_stream());
p.display_warning_pos(p.cmd_pos());
p.regular_stream() << " using 'exit' to interrupt Lean" << endl;
throw interrupt_parser();
}
environment set_option_cmd(parser & p) {
auto id_kind = parse_option_name(p, "invalid set option, identifier (i.e., option name) expected");
name id = id_kind.first;
option_kind k = id_kind.second;
if (k == BoolOption) {
if (p.curr_is_token_or_id(get_true_tk()))
p.set_option(id, true);
else if (p.curr_is_token_or_id(get_false_tk()))
p.set_option(id, false);
else
throw parser_error("invalid Boolean option value, 'true' or 'false' expected", p.pos());
p.next();
} else if (k == StringOption) {
if (!p.curr_is_string())
throw parser_error("invalid option value, given option is not a string", p.pos());
p.set_option(id, p.get_str_val());
p.next();
} else if (k == DoubleOption) {
p.set_option(id, p.parse_double());
} else if (k == UnsignedOption || k == IntOption) {
p.set_option(id, p.parse_small_nat());
} else {
throw parser_error("invalid option value, 'true', 'false', string, integer or decimal value expected", p.pos());
}
p.updt_options();
environment env = p.env();
return update_fingerprint(env, p.get_options().hash());
}
static bool is_next_metaclass_tk(parser const & p) {
return p.curr_is_token(get_lbracket_tk()) || p.curr_is_token(get_unfold_hints_bracket_tk());
}
static name parse_metaclass(parser & p) {
if (p.curr_is_token(get_lbracket_tk())) {
p.next();
auto pos = p.pos();
name n;
while (!p.curr_is_token(get_rbracket_tk())) {
if (p.curr_is_identifier())
n = n.append_after(p.get_name_val().to_string().c_str());
else if (p.curr_is_keyword() || p.curr_is_command())
n = n.append_after(p.get_token_info().value().to_string().c_str());
else if (p.curr_is_token(get_sub_tk()))
n = n.append_after("-");
else
throw parser_error("invalid 'open' command, identifier or symbol expected", pos);
p.next();
}
p.check_token_next(get_rbracket_tk(), "invalid 'open' command, ']' expected");
if (!is_metaclass(n) && n != get_decls_tk() && n != get_declarations_tk())
throw parser_error(sstream() << "invalid metaclass name '[" << n << "]'", pos);
return n;
} else if (p.curr_is_token(get_unfold_hints_bracket_tk())) {
p.next();
return get_unfold_hints_tk();
} else {
return name();
}
}
static void parse_metaclasses(parser & p, buffer<name> & r) {
if (p.curr_is_token(get_sub_tk())) {
p.next();
buffer<name> tmp;
get_metaclasses(tmp);
tmp.push_back(get_decls_tk());
while (is_next_metaclass_tk(p)) {
name m = parse_metaclass(p);
tmp.erase_elem(m);
if (m == get_declarations_tk())
tmp.erase_elem(get_decls_tk());
}
r.append(tmp);
} else {
while (is_next_metaclass_tk(p)) {
r.push_back(parse_metaclass(p));
}
}
}
static void check_identifier(parser & p, environment const & env, name const & ns, name const & id) {
name full_id = ns + id;
if (!env.find(full_id))
throw parser_error(sstream() << "invalid 'open' command, unknown declaration '" << full_id << "'", p.pos());
}
// add id as an abbreviation for d
static environment add_abbrev(parser & p, environment const & env, name const & id, name const & d) {
declaration decl = env.get(d);
buffer<level> ls;
for (name const & l : decl.get_univ_params())
ls.push_back(mk_param_univ(l));
expr value = mk_constant(d, to_list(ls.begin(), ls.end()));
name const & ns = get_namespace(env);
name full_id = ns + id;
p.add_abbrev_index(full_id, d);
environment new_env =
module::add(env, check(env, mk_definition(env, full_id, decl.get_univ_params(), decl.get_type(), value)));
if (full_id != id)
new_env = add_expr_alias_rec(new_env, id, full_id);
return new_env;
}
// open/export [class] id (as id)? (id ...) (renaming id->id id->id) (hiding id ... id)
environment open_export_cmd(parser & p, bool open) {
environment env = p.env();
unsigned fingerprint = 0;
while (true) {
buffer<name> metacls;
parse_metaclasses(p, metacls);
bool decls = false;
if (metacls.empty() ||
std::find(metacls.begin(), metacls.end(), get_decls_tk()) != metacls.end() ||
std::find(metacls.begin(), metacls.end(), get_declarations_tk()) != metacls.end())
decls = true;
for (name const & n : metacls)
fingerprint = hash(fingerprint, n.hash());
auto pos = p.pos();
name ns = p.check_id_next("invalid 'open/export' command, identifier expected");
optional<name> real_ns = to_valid_namespace_name(env, ns);
if (!real_ns)
throw parser_error(sstream() << "invalid namespace name '" << ns << "'", pos);
ns = *real_ns;
fingerprint = hash(fingerprint, ns.hash());
name as;
if (p.curr_is_token_or_id(get_as_tk())) {
p.next();
as = p.check_id_next("invalid 'open/export' command, identifier expected");
}
if (open)
env = using_namespace(env, p.ios(), ns, metacls);
else
env = export_namespace(env, p.ios(), ns, metacls);
if (decls) {
// Remark: we currently to not allow renaming and hiding of universe levels
buffer<name> exceptions;
bool found_explicit = false;
while (p.curr_is_token(get_lparen_tk())) {
p.next();
if (p.curr_is_token_or_id(get_renaming_tk())) {
p.next();
while (p.curr_is_identifier()) {
name from_id = p.get_name_val();
p.next();
p.check_token_next(get_arrow_tk(), "invalid 'open/export' command renaming, '->' expected");
name to_id = p.check_id_next("invalid 'open/export' command renaming, identifier expected");
fingerprint = hash(hash(fingerprint, from_id.hash()), to_id.hash());
check_identifier(p, env, ns, from_id);
exceptions.push_back(from_id);
if (open)
env = add_expr_alias(env, as+to_id, ns+from_id);
else
env = add_abbrev(p, env, as+to_id, ns+from_id);
}
} else if (p.curr_is_token_or_id(get_hiding_tk())) {
p.next();
while (p.curr_is_identifier()) {
name id = p.get_name_val();
p.next();
check_identifier(p, env, ns, id);
exceptions.push_back(id);
fingerprint = hash(fingerprint, id.hash());
}
} else if (p.curr_is_identifier()) {
found_explicit = true;
while (p.curr_is_identifier()) {
name id = p.get_name_val();
p.next();
fingerprint = hash(fingerprint, id.hash());
check_identifier(p, env, ns, id);
if (open)
env = add_expr_alias(env, as+id, ns+id);
else
env = add_abbrev(p, env, as+id, ns+id);
}
} else {
throw parser_error("invalid 'open/export' command option, "
"identifier, 'hiding' or 'renaming' expected", p.pos());
}
if (found_explicit && !exceptions.empty())
throw parser_error("invalid 'open/export' command option, "
"mixing explicit and implicit 'open/export' options", p.pos());
p.check_token_next(get_rparen_tk(), "invalid 'open/export' command option, ')' expected");
}
if (!found_explicit) {
if (open) {
env = add_aliases(env, ns, as, exceptions.size(), exceptions.data());
} else {
environment new_env = env;
env.for_each_declaration([&](declaration const & d) {
if (!is_protected(env, d.get_name()) &&
is_prefix_of(ns, d.get_name()) &&
!is_exception(d.get_name(), ns, exceptions.size(), exceptions.data())) {
name new_id = d.get_name().replace_prefix(ns, as);
if (!new_id.is_anonymous())
new_env = add_abbrev(p, new_env, new_id, d.get_name());
}
});
env = new_env;
}
}
}
if (!is_next_metaclass_tk(p) && !p.curr_is_identifier())
break;
}
return update_fingerprint(env, fingerprint);
}
static environment open_cmd(parser & p) { return open_export_cmd(p, true); }
static environment export_cmd(parser & p) { return open_export_cmd(p, false); }
static environment override_cmd(parser & p) {
environment env = p.env();
while (p.curr_is_identifier()) {
auto pos = p.pos();
name ns = p.check_id_next("invalid 'override' command, identifier expected");
optional<name> real_ns = to_valid_namespace_name(env, ns);
if (!real_ns)
throw parser_error(sstream() << "invalid namespace name '" << ns << "'", pos);
ns = *real_ns;
bool persistent = false;
env = override_notation(env, ns, persistent);
env = overwrite_aliases(env, ns, name());
env = update_fingerprint(env, ns.hash());
}
return env;
}
static environment erase_cache_cmd(parser & p) {
name n = p.check_id_next("invalid #erase_cache command, identifier expected");
p.erase_cached_definition(n);
return p.env();
}
static environment projections_cmd(parser & p) {
name n = p.check_id_next("invalid #projections command, identifier expected");
if (p.curr_is_token(get_dcolon_tk())) {
p.next();
buffer<name> proj_names;
while (p.curr_is_identifier()) {
proj_names.push_back(n + p.get_name_val());
p.next();
}
return mk_projections(p.env(), n, proj_names);
} else {
return mk_projections(p.env(), n);
}
}
static environment telescope_eq_cmd(parser & p) {
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
buffer<expr> t;
while (is_pi(e)) {
expr local = mk_local(p.mk_fresh_name(), binding_name(e), binding_domain(e), binder_info());
t.push_back(local);
e = instantiate(binding_body(e), local);
}
auto tc = mk_type_checker(p.env(), p.mk_ngen());
buffer<expr> eqs;
mk_telescopic_eq(*tc, t, eqs);
for (expr const & eq : eqs) {
regular(p.env(), p.ios()) << local_pp_name(eq) << " : " << mlocal_type(eq) << "\n";
tc->check(mlocal_type(eq), ls);
}
return p.env();
}
static environment local_cmd(parser & p) {
if (p.curr_is_token_or_id(get_attribute_tk())) {
p.next();
return local_attribute_cmd(p);
} else if (p.curr_is_token(get_abbreviation_tk())) {
p.next();
return local_abbreviation_cmd(p);
} else {
return local_notation_cmd(p);
}
}
static environment help_cmd(parser & p) {
flycheck_information info(p.regular_stream());
if (info.enabled()) {
p.display_information_pos(p.cmd_pos());
p.regular_stream() << "help result:\n";
}
if (p.curr_is_token_or_id(get_options_tk())) {
p.next();
for (auto odecl : get_option_declarations()) {
auto opt = odecl.second;
regular(p.env(), p.ios())
<< " " << opt.get_name() << " (" << opt.kind() << ") "
<< opt.get_description() << " (default: " << opt.get_default_value() << ")" << endl;
}
} else if (p.curr_is_token_or_id(get_commands_tk())) {
p.next();
buffer<name> ns;
cmd_table const & cmds = p.cmds();
cmds.for_each([&](name const & n, cmd_info const &) {
ns.push_back(n);
});
std::sort(ns.begin(), ns.end());
for (name const & n : ns) {
regular(p.env(), p.ios())
<< " " << n << ": " << cmds.find(n)->get_descr() << endl;
};
} else {
p.regular_stream()
<< "help options : describe available options\n"
<< "help commands : describe available commands\n";
}
return p.env();
}
static environment init_quotient_cmd(parser & p) {
if (!(p.env().prop_proof_irrel() && p.env().impredicative()))
throw parser_error("invalid init_quotient command, this command is only available for kernels containing an impredicative and proof irrelevant Prop", p.cmd_pos());
return module::declare_quotient(p.env());
}
static environment init_hits_cmd(parser & p) {
if (p.env().prop_proof_irrel() || p.env().impredicative())
throw parser_error("invalid init_hits command, this command is only available for proof relevant and predicative kernels", p.cmd_pos());
return module::declare_hits(p.env());
}
static environment compile_cmd(parser & p) {
name n = p.check_constant_next("invalid #compile command, constant expected");
declaration d = p.env().get(n);
buffer<name> aux_decls;
preprocess_rec(p.env(), d, aux_decls);
return p.env();
}
static environment accessible_cmd(parser & p) {
environment const & env = p.env();
unsigned total = 0;
unsigned accessible = 0;
unsigned accessible_theorems = 0;
env.for_each_declaration([&](declaration const & d) {
name const & n = d.get_name();
total++;
if ((d.is_theorem() || d.is_definition()) &&
!is_instance(env, n) && !is_simp_rule(env, n) && !is_congr_rule(env, n) &&
!is_user_defined_recursor(env, n) && !is_aux_recursor(env, n) &&
!is_projection(env, n) && !is_private(env, n) &&
!is_user_defined_recursor(env, n) && !is_aux_recursor(env, n) &&
!is_subst_relation(env, n) && !is_trans_relation(env, n) &&
!is_symm_relation(env, n) && !is_refl_relation(env, n)) {
accessible++;
if (d.is_theorem())
accessible_theorems++;
}
});
p.regular_stream() << "total: " << total << ", accessible: " << accessible << ", accessible theorems: " << accessible_theorems << "\n";
return env;
}
static void display_name_set(parser & p, name const & n, name_set const & s) {
if (s.empty())
return;
io_state_stream out = p.regular_stream();
out << " " << n << " := {";
bool first = true;
s.for_each([&](name const & n2) {
if (is_private(p.env(), n2))
return;
if (first)
first = false;
else
out << ", ";
out << n2;
});
out << "}\n";
}
static environment decl_stats_cmd(parser & p) {
environment const & env = p.env();
io_state_stream out = p.regular_stream();
out << "Use sets\n";
env.for_each_declaration([&](declaration const & d) {
if ((d.is_theorem() || d.is_axiom()) && !is_private(env, d.get_name()))
display_name_set(p, d.get_name(), get_use_set(env, d.get_name()));
});
out << "Used-by sets\n";
env.for_each_declaration([&](declaration const & d) {
if (!d.is_theorem() && !d.is_axiom() && !is_private(env, d.get_name()))
display_name_set(p, d.get_name(), get_used_by_set(env, d.get_name()));
});
return env;
}
static environment relevant_thms_cmd(parser & p) {
environment const & env = p.env();
name_set R;
while (p.curr_is_identifier()) {
R.insert(p.check_constant_next("invalid #relevant_thms command, constant expected"));
}
name_set TS = get_relevant_thms(env, p.get_options(), R);
io_state_stream out = p.regular_stream();
TS.for_each([&](name const & T) {
out << T << "\n";
});
return env;
}
static void check_expr_and_print(parser & p, expr const & e) {
environment const & env = p.env();
type_checker tc(env);
expr t = tc.check_ignore_undefined_universes(e).first;
p.regular_stream() << e << " : " << t << "\n";
}
static environment app_builder_cmd(parser & p) {
environment const & env = p.env();
auto pos = p.pos();
app_builder b(env);
name c = p.check_constant_next("invalid #app_builder command, constant expected");
bool has_mask = false;
buffer<bool> mask;
if (p.curr_is_token(get_lbracket_tk())) {
p.next();
has_mask = true;
while (true) {
name flag = p.check_constant_next("invalid #app_builder command, constant (true, false) expected");
mask.push_back(flag == get_true_name());
if (!p.curr_is_token(get_comma_tk()))
break;
p.next();
}
p.check_token_next(get_rbracket_tk(), "invalid #app_builder command, ']' expected");
}
buffer<expr> args;
while (true) {
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
args.push_back(e);
if (!p.curr_is_token(get_comma_tk()))
break;
p.next();
}
if (has_mask && args.size() > mask.size())
throw parser_error(sstream() << "invalid #app_builder command, too many arguments", pos);
optional<expr> r;
if (has_mask)
r = b.mk_app(c, mask.size(), mask.data(), args.data());
else
r = b.mk_app(c, args.size(), args.data());
if (r) {
check_expr_and_print(p, *r);
} else {
throw parser_error(sstream() << "failed to build application for '" << c << "'", pos);
}
return env;
}
static environment refl_cmd(parser & p) {
environment const & env = p.env();
auto pos = p.pos();
app_builder b(env);
name relname = p.check_constant_next("invalid #refl command, constant expected");
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
try {
expr r = b.mk_refl(relname, e);
check_expr_and_print(p, r);
} catch (app_builder_exception &) {
throw parser_error(sstream() << "failed to build refl proof", pos);
}
return env;
}
static environment symm_cmd(parser & p) {
environment const & env = p.env();
auto pos = p.pos();
app_builder b(env);
name relname = p.check_constant_next("invalid #symm command, constant expected");
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
try {
expr r = b.mk_symm(relname, e);
check_expr_and_print(p, r);
} catch (app_builder_exception &) {
throw parser_error(sstream() << "failed to build symm proof", pos);
}
return env;
}
static environment trans_cmd(parser & p) {
environment const & env = p.env();
auto pos = p.pos();
app_builder b(env);
name relname = p.check_constant_next("invalid #trans command, constant expected");
expr H1, H2; level_param_names ls;
std::tie(H1, ls) = parse_local_expr(p);
p.check_token_next(get_comma_tk(), "invalid #trans command, ',' expected");
std::tie(H2, ls) = parse_local_expr(p);
try {
expr r = b.mk_trans(relname, H1, H2);
check_expr_and_print(p, r);
} catch (app_builder_exception &) {
throw parser_error(sstream() << "failed to build trans proof", pos);
}
return env;
}
static void parse_expr_vector(parser & p, buffer<expr> & r) {
p.check_token_next(get_lbracket_tk(), "invalid command, '[' expected");
while (true) {
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
r.push_back(e);
if (!p.curr_is_token(get_comma_tk()))
break;
p.next();
}
p.check_token_next(get_rbracket_tk(), "invalid command, ']' expected");
}
static environment replace_cmd(parser & p) {
environment const & env = p.env();
auto pos = p.pos();
expr e; level_param_names ls;
buffer<expr> from;
buffer<expr> to;
std::tie(e, ls) = parse_local_expr(p);
p.check_token_next(get_comma_tk(), "invalid #replace command, ',' expected");
parse_expr_vector(p, from);
p.check_token_next(get_comma_tk(), "invalid #replace command, ',' expected");
parse_expr_vector(p, to);
if (from.size() != to.size())
throw parser_error("invalid #replace command, from/to vectors have different size", pos);
tmp_type_context ctx(env, p.get_options());
fun_info_manager infom(ctx);
auto r = replace(infom, e, from, to);
if (!r)
throw parser_error("#replace commad failed", pos);
p.regular_stream() << *r << "\n";
return env;
}
enum class congr_kind { Simp, Default, Rel };
static environment congr_cmd_core(parser & p, congr_kind kind) {
environment const & env = p.env();
auto pos = p.pos();
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
tmp_type_context ctx(env, p.get_options());
app_builder b(ctx);
fun_info_manager infom(ctx);
congr_lemma_manager cm(b, infom);
optional<congr_lemma> r;
switch (kind) {
case congr_kind::Simp: r = cm.mk_congr_simp(e); break;
case congr_kind::Default: r = cm.mk_congr(e); break;
case congr_kind::Rel: r = cm.mk_rel_iff_congr(e); break;
}
if (!r)
throw parser_error("failed to generated congruence lemma", pos);
auto out = p.regular_stream();
out << "[";
bool first = true;
for (auto k : r->get_arg_kinds()) {
if (!first) out << ", "; else first = false;
switch (k) {
case congr_arg_kind::Fixed: out << "fixed"; break;
case congr_arg_kind::Eq: out << "eq"; break;
case congr_arg_kind::Cast: out << "cast"; break;
}
}
out << "]\n";
out << r->get_proof() << "\n:\n" << r->get_type() << "\n";;
type_checker tc(env);
expr type = tc.check(r->get_proof(), ls).first;
if (!tc.is_def_eq(type, r->get_type()).first)
throw parser_error("congruence lemma reported type does not match given type", pos);
return env;
}
static environment congr_simp_cmd(parser & p) {
return congr_cmd_core(p, congr_kind::Simp);
}
static environment congr_cmd(parser & p) {
return congr_cmd_core(p, congr_kind::Default);
}
static environment congr_rel_cmd(parser & p) {
return congr_cmd_core(p, congr_kind::Rel);
}
static environment simplify_cmd(parser & p) {
name rel = p.check_constant_next("invalid #simplify command, constant expected");
name ns = p.check_id_next("invalid #simplify command, id expected");
unsigned o = p.parse_small_nat();
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
blast::scope_debug scope(p.env(), p.ios());
simp_rule_sets srss;
if (ns == name("null")) {
} else if (ns == name("env")) {
srss = get_simp_rule_sets(p.env());
} else {
srss = get_simp_rule_sets(p.env(), p.get_options(), ns);
}
blast::simp::result r = blast::simplify(rel, e, srss);
flycheck_information info(p.regular_stream());
if (info.enabled()) {
p.display_information_pos(p.cmd_pos());
p.regular_stream() << "simplify result:\n";
}
if (!r.has_proof()) {
p.regular_stream() << "(refl): " << r.get_new() << endl;
} else {
auto tc = mk_type_checker(p.env(), p.mk_ngen());
expr pf_type = tc->check(r.get_proof(), ls).first;
if (o == 0) p.regular_stream() << r.get_new() << endl;
else if (o == 1) p.regular_stream() << r.get_proof() << endl;
else p.regular_stream() << pf_type << endl;
}
return p.env();
}
static environment normalizer_cmd(parser & p) {
environment const & env = p.env();
expr e; level_param_names ls;
std::tie(e, ls) = parse_local_expr(p);
blast::scope_debug scope(p.env(), p.ios());
expr r = blast::normalize(e);
p.regular_stream() << r << endl;
return env;
}
static environment abstract_expr_cmd(parser & p) {
unsigned o = p.parse_small_nat();
default_type_context ctx(p.env(), p.get_options());
app_builder builder(p.env(), p.get_options());
fun_info_manager fun_info(ctx);
congr_lemma_manager congr_lemma(builder, fun_info);
abstract_expr_manager ae_manager(congr_lemma);
flycheck_information info(p.regular_stream());
if (info.enabled()) p.display_information_pos(p.cmd_pos());
expr e, a, b;
level_param_names ls, ls1, ls2;
if (o == 0) {
// hash
if (info.enabled()) p.regular_stream() << "abstract hash: " << endl;
std::tie(e, ls) = parse_local_expr(p);
p.regular_stream() << ae_manager.hash(e) << endl;
} else {
// is_equal
if (info.enabled()) p.regular_stream() << "abstract is_equal: " << endl;
std::tie(a, ls1) = parse_local_expr(p);
p.check_token_next(get_comma_tk(), "invalid #abstract_expr command, ',' expected");
std::tie(b, ls2) = parse_local_expr(p);
p.regular_stream() << ae_manager.is_equal(a, b) << endl;
}
return p.env();
}
void init_cmd_table(cmd_table & r) {
add_cmd(r, cmd_info("open", "create aliases for declarations, and use objects defined in other namespaces",
open_cmd));
add_cmd(r, cmd_info("export", "create abbreviations for declarations, "
"and export objects defined in other namespaces", export_cmd));
add_cmd(r, cmd_info("override", "override notation declarations using the ones defined in the given namespace",
override_cmd));
add_cmd(r, cmd_info("set_option", "set configuration option", set_option_cmd));
add_cmd(r, cmd_info("exit", "exit", exit_cmd));
add_cmd(r, cmd_info("print", "print a string", print_cmd));
add_cmd(r, cmd_info("section", "open a new section", section_cmd));
add_cmd(r, cmd_info("namespace", "open a new namespace", namespace_cmd));
add_cmd(r, cmd_info("end", "close the current namespace/section", end_scoped_cmd));
add_cmd(r, cmd_info("check", "type check given expression, and display its type", check_cmd));
add_cmd(r, cmd_info("eval", "evaluate given expression", eval_cmd));
add_cmd(r, cmd_info("find_decl", "find definitions and/or theorems", find_cmd));
add_cmd(r, cmd_info("local", "define local attributes or notation", local_cmd));
add_cmd(r, cmd_info("help", "brief description of available commands and options", help_cmd));
add_cmd(r, cmd_info("init_quotient", "initialize quotient type computational rules", init_quotient_cmd));
add_cmd(r, cmd_info("init_hits", "initialize builtin HITs", init_hits_cmd));
add_cmd(r, cmd_info("#erase_cache", "erase cached definition (for debugging purposes)", erase_cache_cmd));
add_cmd(r, cmd_info("#projections", "generate projections for inductive datatype (for debugging purposes)", projections_cmd));
add_cmd(r, cmd_info("#telescope_eq", "(for debugging purposes)", telescope_eq_cmd));
add_cmd(r, cmd_info("#app_builder", "(for debugging purposes)", app_builder_cmd));
add_cmd(r, cmd_info("#refl", "(for debugging purposes)", refl_cmd));
add_cmd(r, cmd_info("#trans", "(for debugging purposes)", trans_cmd));
add_cmd(r, cmd_info("#symm", "(for debugging purposes)", symm_cmd));
add_cmd(r, cmd_info("#compile", "(for debugging purposes)", compile_cmd));
add_cmd(r, cmd_info("#replace", "(for debugging purposes)", replace_cmd));
add_cmd(r, cmd_info("#congr", "(for debugging purposes)", congr_cmd));
add_cmd(r, cmd_info("#congr_simp", "(for debugging purposes)", congr_simp_cmd));
add_cmd(r, cmd_info("#congr_rel", "(for debugging purposes)", congr_rel_cmd));
add_cmd(r, cmd_info("#normalizer", "(for debugging purposes)", normalizer_cmd));
add_cmd(r, cmd_info("#accessible", "(for debugging purposes) display number of accessible declarations for blast tactic", accessible_cmd));
add_cmd(r, cmd_info("#decl_stats", "(for debugging purposes) display declaration statistics", decl_stats_cmd));
add_cmd(r, cmd_info("#relevant_thms", "(for debugging purposes) select relevant theorems using Meng&Paulson heuristic", relevant_thms_cmd));
add_cmd(r, cmd_info("#simplify", "(for debugging purposes) simplify given expression", simplify_cmd));
add_cmd(r, cmd_info("#abstract_expr", "(for debugging purposes) call abstract expr methods", abstract_expr_cmd));
register_decl_cmds(r);
register_inductive_cmd(r);
register_structure_cmd(r);
register_notation_cmds(r);
register_begin_end_cmds(r);
register_tactic_hint_cmd(r);
}
static cmd_table * g_cmds = nullptr;
cmd_table get_builtin_cmds() {
return *g_cmds;
}
void initialize_builtin_cmds() {
g_cmds = new cmd_table();
init_cmd_table(*g_cmds);
}
void finalize_builtin_cmds() {
delete g_cmds;
}
}