lean2/hott/types/sum.hlean

165 lines
6.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Theorems about sums/coproducts/disjoint unions
-/
open lift eq is_equiv equiv equiv.ops prod prod.ops is_trunc sigma bool
namespace sum
universe variables u v
variables {A : Type.{u}} {B : Type.{v}} (z z' : A + B)
protected definition eta : sum.rec inl inr z = z :=
by induction z; all_goals reflexivity
protected definition code [unfold 3 4] : A + B → A + B → Type.{max u v}
| code (inl a) (inl a') := lift.{u v} (a = a')
| code (inr b) (inr b') := lift.{v u} (b = b')
| code _ _ := lift empty
protected definition decode [unfold 3 4] : Π(z z' : A + B), sum.code z z' → z = z'
| decode (inl a) (inl a') := λc, ap inl (down c)
| decode (inl a) (inr b') := λc, empty.elim (down c) _
| decode (inr b) (inl a') := λc, empty.elim (down c) _
| decode (inr b) (inr b') := λc, ap inr (down c)
variables {z z'}
protected definition encode [unfold 3 4 5] (p : z = z') : sum.code z z' :=
by induction p; induction z; all_goals exact up idp
variables (z z')
definition sum_eq_equiv [constructor] : (z = z') ≃ sum.code z z' :=
equiv.MK sum.encode
!sum.decode
abstract begin
intro c, induction z with a b, all_goals induction z' with a' b',
all_goals (esimp at *; induction c with c),
all_goals induction c, -- c either has type empty or a path
all_goals reflexivity
end end
abstract begin
intro p, induction p, induction z, all_goals reflexivity
end end
section
variables {a a' : A} {b b' : B}
definition eq_of_inl_eq_inl [unfold 5] (p : inl a = inl a' :> A + B) : a = a' :=
down (sum.encode p)
definition eq_of_inr_eq_inr [unfold 5] (p : inr b = inr b' :> A + B) : b = b' :=
down (sum.encode p)
definition empty_of_inl_eq_inr (p : inl a = inr b) : empty := down (sum.encode p)
definition empty_of_inr_eq_inl (p : inr b = inl a) : empty := down (sum.encode p)
definition sum_transport {P Q : A → Type} (p : a = a') (z : P a + Q a)
: p ▸ z = sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z :=
by induction p; induction z; all_goals reflexivity
end
variables {A' B' : Type} (f : A → A') (g : B → B')
definition sum_functor [unfold 7] : A + B → A' + B'
| sum_functor (inl a) := inl (f a)
| sum_functor (inr b) := inr (g b)
definition is_equiv_sum_functor [constructor] [Hf : is_equiv f] [Hg : is_equiv g]
: is_equiv (sum_functor f g) :=
adjointify (sum_functor f g)
(sum_functor f⁻¹ g⁻¹)
abstract begin
intro z, induction z,
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
end end
abstract begin
intro z, induction z,
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
end end
definition sum_equiv_sum_of_is_equiv [constructor] [Hf : is_equiv f] [Hg : is_equiv g]
: A + B ≃ A' + B' :=
equiv.mk _ (is_equiv_sum_functor f g)
definition sum_equiv_sum [constructor] (f : A ≃ A') (g : B ≃ B') : A + B ≃ A' + B' :=
equiv.mk _ (is_equiv_sum_functor f g)
definition sum_equiv_sum_left [constructor] (g : B ≃ B') : A + B ≃ A + B' :=
sum_equiv_sum equiv.refl g
definition sum_equiv_sum_right [constructor] (f : A ≃ A') : A + B ≃ A' + B :=
sum_equiv_sum f equiv.refl
definition flip [unfold 3] : A + B → B + A
| flip (inl a) := inr a
| flip (inr b) := inl b
definition sum_comm_equiv [constructor] (A B : Type) : A + B ≃ B + A :=
begin
fapply equiv.MK,
exact flip,
exact flip,
all_goals (intro z; induction z; all_goals reflexivity)
end
-- definition sum_assoc_equiv (A B C : Type) : A + (B + C) ≃ (A + B) + C :=
-- begin
-- fapply equiv.MK,
-- all_goals try (intro z; induction z with u v;
-- all_goals try induction u; all_goals try induction v),
-- all_goals try (repeat (apply inl | apply inr | assumption); now),
-- end
definition sum_empty_equiv [constructor] (A : Type) : A + empty ≃ A :=
begin
fapply equiv.MK,
intro z, induction z, assumption, contradiction,
exact inl,
intro a, reflexivity,
intro z, induction z, reflexivity, contradiction
end
definition sum_rec_unc {P : A + B → Type} (fg : (Πa, P (inl a)) × (Πb, P (inr b))) : Πz, P z :=
sum.rec fg.1 fg.2
definition is_equiv_sum_rec [constructor] (P : A + B → Type)
: is_equiv (sum_rec_unc : (Πa, P (inl a)) × (Πb, P (inr b)) → Πz, P z) :=
begin
apply adjointify sum_rec_unc (λf, (λa, f (inl a), λb, f (inr b))),
intro f, apply eq_of_homotopy, intro z, focus (induction z; all_goals reflexivity),
intro h, induction h with f g, reflexivity
end
definition equiv_sum_rec [constructor] (P : A + B → Type)
: (Πa, P (inl a)) × (Πb, P (inr b)) ≃ Πz, P z :=
equiv.mk _ !is_equiv_sum_rec
definition imp_prod_imp_equiv_sum_imp [constructor] (A B C : Type)
: (A → C) × (B → C) ≃ (A + B → C) :=
!equiv_sum_rec
definition is_trunc_sum (n : trunc_index) [HA : is_trunc (n.+2) A] [HB : is_trunc (n.+2) B]
: is_trunc (n.+2) (A + B) :=
begin
apply is_trunc_succ_intro, intro z z',
apply is_trunc_equiv_closed_rev, apply sum_eq_equiv,
induction z with a b, all_goals induction z' with a' b', all_goals esimp,
all_goals exact _,
end
/- Sums are equivalent to dependent sigmas where the first component is a bool. -/
definition sum_of_sigma_bool {A B : Type} (v : Σ(b : bool), bool.rec A B b) : A + B :=
by induction v with b x; induction b; exact inl x; exact inr x
definition sigma_bool_of_sum {A B : Type} (z : A + B) : Σ(b : bool), bool.rec A B b :=
by induction z with a b; exact ⟨ff, a⟩; exact ⟨tt, b⟩
definition sum_equiv_sigma_bool [constructor] (A B : Type)
: A + B ≃ Σ(b : bool), bool.rec A B b :=
equiv.MK sigma_bool_of_sum
sum_of_sigma_bool
begin intro v, induction v with b x, induction b, all_goals reflexivity end
begin intro z, induction z with a b, all_goals reflexivity end
end sum