2015-02-26 13:19:54 -05:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
|
|
|
|
|
Module: init.axioms.funext_varieties
|
|
|
|
|
Authors: Jakob von Raumer
|
|
|
|
|
|
|
|
|
|
Ported from Coq HoTT
|
|
|
|
|
-/
|
|
|
|
|
|
2014-12-16 15:10:12 -05:00
|
|
|
|
prelude
|
2015-02-26 13:19:54 -05:00
|
|
|
|
import ..path ..trunc ..equiv
|
2014-12-11 23:14:53 -05:00
|
|
|
|
|
2015-02-20 19:30:32 -05:00
|
|
|
|
open eq is_trunc sigma function
|
2014-12-11 23:14:53 -05:00
|
|
|
|
|
2015-02-23 19:54:16 -05:00
|
|
|
|
/- In init.axioms.funext, we defined function extensionality to be the assertion
|
2014-12-11 23:14:53 -05:00
|
|
|
|
that the map apD10 is an equivalence. We now prove that this follows
|
|
|
|
|
from a couple of weaker-looking forms of function extensionality. We do
|
|
|
|
|
require eta conversion, which Coq 8.4+ has judgmentally.
|
|
|
|
|
|
|
|
|
|
This proof is originally due to Voevodsky; it has since been simplified
|
|
|
|
|
by Peter Lumsdaine and Michael Shulman. -/
|
|
|
|
|
|
2015-02-23 19:54:16 -05:00
|
|
|
|
definition funext.{l k} :=
|
|
|
|
|
Π ⦃A : Type.{l}⦄ {P : A → Type.{k}} (f g : Π x, P x), is_equiv (@apD10 A P f g)
|
|
|
|
|
|
2014-12-11 23:14:53 -05:00
|
|
|
|
-- Naive funext is the simple assertion that pointwise equal functions are equal.
|
|
|
|
|
-- TODO think about universe levels
|
|
|
|
|
definition naive_funext :=
|
2015-02-23 19:54:16 -05:00
|
|
|
|
Π ⦃A : Type⦄ {P : A → Type} (f g : Πx, P x), (f ∼ g) → f = g
|
2014-12-11 23:14:53 -05:00
|
|
|
|
|
|
|
|
|
-- Weak funext says that a product of contractible types is contractible.
|
2014-12-31 13:47:55 -05:00
|
|
|
|
definition weak_funext :=
|
2015-02-23 19:54:16 -05:00
|
|
|
|
Π ⦃A : Type⦄ (P : A → Type) [H: Πx, is_contr (P x)], is_contr (Πx, P x)
|
2014-12-11 23:14:53 -05:00
|
|
|
|
|
2015-02-20 19:30:32 -05:00
|
|
|
|
definition weak_funext_of_naive_funext : naive_funext → weak_funext :=
|
2014-12-11 23:14:53 -05:00
|
|
|
|
(λ nf A P (Pc : Πx, is_contr (P x)),
|
|
|
|
|
let c := λx, center (P x) in
|
|
|
|
|
is_contr.mk c (λ f,
|
|
|
|
|
have eq' : (λx, center (P x)) ∼ f,
|
|
|
|
|
from (λx, contr (f x)),
|
2014-12-12 13:17:50 -05:00
|
|
|
|
have eq : (λx, center (P x)) = f,
|
2014-12-11 23:14:53 -05:00
|
|
|
|
from nf A P (λx, center (P x)) f eq',
|
|
|
|
|
eq
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
/- The less obvious direction is that WeakFunext implies Funext
|
|
|
|
|
(and hence all three are logically equivalent). The point is that under weak
|
|
|
|
|
funext, the space of "pointwise homotopies" has the same universal property as
|
|
|
|
|
the space of paths. -/
|
|
|
|
|
|
|
|
|
|
context
|
|
|
|
|
universes l k
|
2015-02-26 13:19:54 -05:00
|
|
|
|
parameters [wf : weak_funext.{l k}] {A : Type.{l}} {B : A → Type.{k}} (f : Π x, B x)
|
2014-12-11 23:14:53 -05:00
|
|
|
|
|
2015-02-20 19:30:32 -05:00
|
|
|
|
definition is_contr_sigma_homotopy [instance] : is_contr (Σ (g : Π x, B x), f ∼ g) :=
|
|
|
|
|
is_contr.mk (sigma.mk f (homotopy.refl f))
|
2014-12-11 23:14:53 -05:00
|
|
|
|
(λ dp, sigma.rec_on dp
|
|
|
|
|
(λ (g : Π x, B x) (h : f ∼ g),
|
2014-12-12 13:17:50 -05:00
|
|
|
|
let r := λ (k : Π x, Σ y, f x = y),
|
2014-12-19 18:46:06 -08:00
|
|
|
|
@sigma.mk _ (λg, f ∼ g)
|
|
|
|
|
(λx, pr1 (k x)) (λx, pr2 (k x)) in
|
|
|
|
|
let s := λ g h x, @sigma.mk _ (λy, f x = y) (g x) (h x) in
|
2014-12-12 13:17:50 -05:00
|
|
|
|
have t1 : Πx, is_contr (Σ y, f x = y),
|
2015-02-20 19:30:32 -05:00
|
|
|
|
from (λx, !is_contr_sigma_eq),
|
2014-12-12 13:17:50 -05:00
|
|
|
|
have t2 : is_contr (Πx, Σ y, f x = y),
|
2014-12-11 23:14:53 -05:00
|
|
|
|
from !wf,
|
2014-12-19 18:46:06 -08:00
|
|
|
|
have t3 : (λ x, @sigma.mk _ (λ y, f x = y) (f x) idp) = s g h,
|
2015-02-20 19:30:32 -05:00
|
|
|
|
from @center_eq (Π x, Σ y, f x = y) t2 _ _,
|
2014-12-19 18:46:06 -08:00
|
|
|
|
have t4 : r (λ x, sigma.mk (f x) idp) = r (s g h),
|
2014-12-11 23:14:53 -05:00
|
|
|
|
from ap r t3,
|
2015-02-20 19:30:32 -05:00
|
|
|
|
have endt : sigma.mk f (homotopy.refl f) = sigma.mk g h,
|
2014-12-11 23:14:53 -05:00
|
|
|
|
from t4,
|
|
|
|
|
endt
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
2015-02-20 19:30:32 -05:00
|
|
|
|
parameters (Q : Π g (h : f ∼ g), Type) (d : Q f (homotopy.refl f))
|
2014-12-11 23:14:53 -05:00
|
|
|
|
|
2015-02-20 19:30:32 -05:00
|
|
|
|
definition homotopy_ind (g : Πx, B x) (h : f ∼ g) : Q g h :=
|
|
|
|
|
@transport _ (λ gh, Q (pr1 gh) (pr2 gh)) (sigma.mk f (homotopy.refl f)) (sigma.mk g h)
|
|
|
|
|
(@center_eq _ is_contr_sigma_homotopy _ _) d
|
2014-12-11 23:14:53 -05:00
|
|
|
|
|
2015-02-24 14:09:20 -08:00
|
|
|
|
local attribute weak_funext [reducible]
|
2015-02-20 19:30:32 -05:00
|
|
|
|
local attribute homotopy_ind [reducible]
|
|
|
|
|
definition homotopy_ind_comp : homotopy_ind f (homotopy.refl f) = d :=
|
|
|
|
|
(@hprop_eq _ _ _ _ !center_eq idp)⁻¹ ▹ idp
|
2014-12-11 23:14:53 -05:00
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- Now the proof is fairly easy; we can just use the same induction principle on both sides.
|
|
|
|
|
universe variables l k
|
|
|
|
|
|
2015-02-24 14:09:20 -08:00
|
|
|
|
local attribute weak_funext [reducible]
|
2015-02-20 19:30:32 -05:00
|
|
|
|
theorem funext_of_weak_funext (wf : weak_funext.{l k}) : funext.{l k} :=
|
2015-02-23 19:54:16 -05:00
|
|
|
|
λ A B f g,
|
2014-12-12 13:17:50 -05:00
|
|
|
|
let eq_to_f := (λ g' x, f = g') in
|
2015-02-24 15:25:02 -08:00
|
|
|
|
let sim2path := homotopy_ind f eq_to_f idp in
|
2015-03-05 11:10:34 -08:00
|
|
|
|
assert t1 : sim2path f (homotopy.refl f) = idp,
|
2015-02-24 15:25:02 -08:00
|
|
|
|
proof homotopy_ind_comp f eq_to_f idp qed,
|
2015-03-05 11:10:34 -08:00
|
|
|
|
assert t2 : apD10 (sim2path f (homotopy.refl f)) = (homotopy.refl f),
|
2014-12-11 23:14:53 -05:00
|
|
|
|
proof ap apD10 t1 qed,
|
|
|
|
|
have sect : apD10 ∘ (sim2path g) ∼ id,
|
2015-02-24 15:25:02 -08:00
|
|
|
|
proof (homotopy_ind f (λ g' x, apD10 (sim2path g' x) = x) t2) g qed,
|
2014-12-11 23:14:53 -05:00
|
|
|
|
have retr : (sim2path g) ∘ apD10 ∼ id,
|
2015-02-24 15:25:02 -08:00
|
|
|
|
from (λ h, eq.rec_on h (homotopy_ind_comp f _ idp)),
|
2015-02-23 19:54:16 -05:00
|
|
|
|
is_equiv.adjointify apD10 (sim2path g) sect retr
|
2014-12-11 23:14:53 -05:00
|
|
|
|
|
|
|
|
|
definition funext_from_naive_funext : naive_funext -> funext :=
|
2015-02-20 19:30:32 -05:00
|
|
|
|
compose funext_of_weak_funext weak_funext_of_naive_funext
|