lean2/library/data/bool.lean

129 lines
3.5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
2014-12-01 04:34:12 +00:00
import logic.eq
open eq eq.ops decidable
namespace bool
local attribute bor [reducible]
local attribute band [reducible]
theorem dichotomy (b : bool) : b = ff b = tt :=
bool.cases_on b (or.inl rfl) (or.inr rfl)
theorem cond_ff [simp] {A : Type} (t e : A) : cond ff t e = e :=
rfl
theorem cond_tt [simp] {A : Type} (t e : A) : cond tt t e = t :=
rfl
theorem eq_tt_of_ne_ff : ∀ {a : bool}, a ≠ ff → a = tt
| @eq_tt_of_ne_ff tt H := rfl
| @eq_tt_of_ne_ff ff H := absurd rfl H
theorem eq_ff_of_ne_tt : ∀ {a : bool}, a ≠ tt → a = ff
| @eq_ff_of_ne_tt tt H := absurd rfl H
| @eq_ff_of_ne_tt ff H := rfl
theorem absurd_of_eq_ff_of_eq_tt {B : Prop} {a : bool} (H₁ : a = ff) (H₂ : a = tt) : B :=
absurd (H₁⁻¹ ⬝ H₂) ff_ne_tt
theorem tt_bor [simp] (a : bool) : bor tt a = tt :=
rfl
notation a || b := bor a b
theorem bor_tt [simp] (a : bool) : a || tt = tt :=
bool.cases_on a rfl rfl
theorem ff_bor [simp] (a : bool) : ff || a = a :=
bool.cases_on a rfl rfl
theorem bor_ff [simp] (a : bool) : a || ff = a :=
bool.cases_on a rfl rfl
theorem bor_self [simp] (a : bool) : a || a = a :=
bool.cases_on a rfl rfl
theorem bor.comm [simp] (a b : bool) : a || b = b || a :=
by cases a; repeat (cases b | reflexivity)
theorem bor.assoc [simp] (a b c : bool) : (a || b) || c = a || (b || c) :=
match a with
| ff := by rewrite *ff_bor
| tt := by rewrite *tt_bor
end
theorem or_of_bor_eq {a b : bool} : a || b = tt → a = tt b = tt :=
bool.rec_on a
(suppose ff || b = tt,
have b = tt, from !ff_bor ▸ this,
or.inr this)
(suppose tt || b = tt,
or.inl rfl)
theorem bor_inl {a b : bool} (H : a = tt) : a || b = tt :=
by rewrite H
theorem bor_inr {a b : bool} (H : b = tt) : a || b = tt :=
bool.rec_on a (by rewrite H) (by rewrite H)
theorem ff_band [simp] (a : bool) : ff && a = ff :=
rfl
theorem tt_band [simp] (a : bool) : tt && a = a :=
bool.cases_on a rfl rfl
theorem band_ff [simp] (a : bool) : a && ff = ff :=
bool.cases_on a rfl rfl
theorem band_tt [simp] (a : bool) : a && tt = a :=
bool.cases_on a rfl rfl
theorem band_self [simp] (a : bool) : a && a = a :=
bool.cases_on a rfl rfl
theorem band.comm [simp] (a b : bool) : a && b = b && a :=
bool.cases_on a
(bool.cases_on b rfl rfl)
(bool.cases_on b rfl rfl)
theorem band.assoc [simp] (a b c : bool) : (a && b) && c = a && (b && c) :=
match a with
| ff := by rewrite *ff_band
| tt := by rewrite *tt_band
end
theorem band_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
or.elim (dichotomy a)
(suppose a = ff,
absurd (by msimp) ff_ne_tt)
(suppose a = tt, this)
theorem band_intro {a b : bool} (H₁ : a = tt) (H₂ : b = tt) : a && b = tt :=
by rewrite [H₁, H₂]
theorem band_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
band_elim_left (!band.comm ⬝ H)
theorem bnot_bnot [simp] (a : bool) : bnot (bnot a) = a :=
bool.cases_on a rfl rfl
theorem bnot_false [simp] : bnot ff = tt :=
rfl
theorem bnot_true [simp] : bnot tt = ff :=
rfl
theorem eq_tt_of_bnot_eq_ff {a : bool} : bnot a = ff → a = tt :=
bool.cases_on a (by contradiction) (λ h, rfl)
theorem eq_ff_of_bnot_eq_tt {a : bool} : bnot a = tt → a = ff :=
bool.cases_on a (λ h, rfl) (by contradiction)
definition bxor (x:bool) (y:bool) := cond x (bnot y) y
end bool