2015-04-29 00:48:39 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Author: Floris van Doorn
|
|
|
|
|
|
|
|
|
|
Ported from Coq HoTT
|
|
|
|
|
Theorems about embeddings and surjections
|
|
|
|
|
-/
|
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
import hit.trunc types.equiv cubical.square
|
2015-04-29 00:48:39 +00:00
|
|
|
|
|
|
|
|
|
open equiv sigma sigma.ops eq trunc is_trunc pi is_equiv fiber prod
|
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
variables {A B : Type} (f : A → B) {b : B}
|
2015-04-29 00:48:39 +00:00
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_embedding [class] (f : A → B) := Π(a a' : A), is_equiv (ap f : a = a' → f a = f a')
|
2015-04-29 00:48:39 +00:00
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_surjective [class] (f : A → B) := Π(b : B), ∥ fiber f b ∥
|
2015-04-29 00:48:39 +00:00
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_split_surjective [class] (f : A → B) := Π(b : B), fiber f b
|
2015-04-29 00:48:39 +00:00
|
|
|
|
|
|
|
|
|
structure is_retraction [class] (f : A → B) :=
|
|
|
|
|
(sect : B → A)
|
|
|
|
|
(right_inverse : Π(b : B), f (sect b) = b)
|
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
structure is_section [class] (f : A → B) :=
|
|
|
|
|
(retr : B → A)
|
|
|
|
|
(left_inverse : Π(a : A), retr (f a) = a)
|
|
|
|
|
|
|
|
|
|
definition is_weakly_constant [class] (f : A → B) := Π(a a' : A), f a = f a'
|
2015-08-07 16:37:05 +00:00
|
|
|
|
|
|
|
|
|
structure is_constant [class] (f : A → B) :=
|
|
|
|
|
(pt : B)
|
|
|
|
|
(eq : Π(a : A), f a = pt)
|
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
structure is_conditionally_constant [class] (f : A → B) :=
|
2015-08-07 16:37:05 +00:00
|
|
|
|
(g : ∥A∥ → B)
|
|
|
|
|
(eq : Π(a : A), f a = g (tr a))
|
|
|
|
|
|
2015-04-29 00:48:39 +00:00
|
|
|
|
namespace function
|
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
abbreviation sect [unfold 4] := @is_retraction.sect
|
|
|
|
|
abbreviation right_inverse [unfold 4] := @is_retraction.right_inverse
|
|
|
|
|
abbreviation retr [unfold 4] := @is_section.retr
|
|
|
|
|
abbreviation left_inverse [unfold 4] := @is_section.left_inverse
|
|
|
|
|
|
|
|
|
|
definition is_equiv_ap_of_embedding [instance] [H : is_embedding f] (a a' : A)
|
|
|
|
|
: is_equiv (ap f : a = a' → f a = f a') :=
|
|
|
|
|
H a a'
|
2015-04-29 00:48:39 +00:00
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
variable {f}
|
2015-04-29 00:48:39 +00:00
|
|
|
|
definition is_injective_of_is_embedding [reducible] [H : is_embedding f] {a a' : A}
|
|
|
|
|
: f a = f a' → a = a' :=
|
|
|
|
|
(ap f)⁻¹
|
|
|
|
|
|
|
|
|
|
definition is_embedding_of_is_injective [HA : is_hset A] [HB : is_hset B]
|
|
|
|
|
(H : Π(a a' : A), f a = f a' → a = a') : is_embedding f :=
|
|
|
|
|
begin
|
2015-04-30 18:00:39 +00:00
|
|
|
|
intro a a',
|
2015-04-29 00:48:39 +00:00
|
|
|
|
fapply adjointify,
|
|
|
|
|
{exact (H a a')},
|
|
|
|
|
{intro p, apply is_hset.elim},
|
|
|
|
|
{intro p, apply is_hset.elim}
|
|
|
|
|
end
|
2015-09-10 22:32:52 +00:00
|
|
|
|
variable (f)
|
2015-04-29 00:48:39 +00:00
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_hprop_is_embedding [instance] : is_hprop (is_embedding f) :=
|
|
|
|
|
by unfold is_embedding; exact _
|
2015-04-29 00:48:39 +00:00
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_hprop_fiber_of_is_embedding [H : is_embedding f] (b : B) :
|
2015-09-03 15:11:46 +00:00
|
|
|
|
is_hprop (fiber f b) :=
|
|
|
|
|
begin
|
|
|
|
|
apply is_hprop.mk, intro v w,
|
|
|
|
|
induction v with a p, induction w with a' q, induction q,
|
|
|
|
|
fapply fiber_eq,
|
|
|
|
|
{ esimp, apply is_injective_of_is_embedding p},
|
|
|
|
|
{ esimp [is_injective_of_is_embedding], symmetry, apply right_inv}
|
|
|
|
|
end
|
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
variable {f}
|
2015-09-03 15:11:46 +00:00
|
|
|
|
definition is_surjective_rec_on {P : Type} (H : is_surjective f) (b : B) [Pt : is_hprop P]
|
|
|
|
|
(IH : fiber f b → P) : P :=
|
2015-09-10 22:32:52 +00:00
|
|
|
|
trunc.rec_on (H b) IH
|
|
|
|
|
variable (f)
|
2015-09-03 15:11:46 +00:00
|
|
|
|
|
|
|
|
|
definition is_surjective_of_is_split_surjective [instance] [H : is_split_surjective f]
|
|
|
|
|
: is_surjective f :=
|
2015-09-10 22:32:52 +00:00
|
|
|
|
λb, tr (H b)
|
|
|
|
|
|
|
|
|
|
definition is_hprop_is_surjective [instance] : is_hprop (is_surjective f) :=
|
|
|
|
|
by unfold is_surjective; exact _
|
|
|
|
|
|
|
|
|
|
definition is_weakly_constant_ap [instance] [H : is_weakly_constant f] (a a' : A) :
|
|
|
|
|
is_weakly_constant (ap f : a = a' → f a = f a') :=
|
|
|
|
|
take p q : a = a',
|
|
|
|
|
have Π{b c : A} {r : b = c}, (H a b)⁻¹ ⬝ H a c = ap f r, from
|
|
|
|
|
(λb c r, eq.rec_on r !con.left_inv),
|
|
|
|
|
this⁻¹ ⬝ this
|
|
|
|
|
|
|
|
|
|
definition is_constant_ap [unfold 4] [instance] [H : is_constant f] (a a' : A)
|
|
|
|
|
: is_constant (ap f : a = a' → f a = f a') :=
|
|
|
|
|
begin
|
|
|
|
|
induction H with b q,
|
|
|
|
|
fapply is_constant.mk,
|
|
|
|
|
{ exact q a ⬝ (q a')⁻¹},
|
|
|
|
|
{ intro p, induction p, exact !con.right_inv⁻¹}
|
|
|
|
|
end
|
2015-09-03 15:11:46 +00:00
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_contr_is_retraction [instance] [H : is_equiv f] : is_contr (is_retraction f) :=
|
2015-04-29 00:48:39 +00:00
|
|
|
|
begin
|
2015-09-10 22:32:52 +00:00
|
|
|
|
have H2 : (Σ(g : B → A), Πb, f (g b) = b) ≃ is_retraction f,
|
2015-04-29 00:48:39 +00:00
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
2015-09-10 22:32:52 +00:00
|
|
|
|
{intro x, induction x with g p, constructor, exact p},
|
|
|
|
|
{intro h, induction h, apply sigma.mk, assumption},
|
|
|
|
|
{intro h, induction h, reflexivity},
|
|
|
|
|
{intro x, induction x, reflexivity},
|
2015-04-29 00:48:39 +00:00
|
|
|
|
end,
|
2015-09-10 22:32:52 +00:00
|
|
|
|
apply is_trunc_equiv_closed, exact H2,
|
|
|
|
|
apply is_equiv.is_contr_right_inverse
|
2015-04-29 00:48:39 +00:00
|
|
|
|
end
|
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_contr_is_section [instance] [H : is_equiv f] : is_contr (is_section f) :=
|
|
|
|
|
begin
|
|
|
|
|
have H2 : (Σ(g : B → A), Πa, g (f a) = a) ≃ is_section f,
|
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{intro x, induction x with g p, constructor, exact p},
|
|
|
|
|
{intro h, induction h, apply sigma.mk, assumption},
|
|
|
|
|
{intro h, induction h, reflexivity},
|
|
|
|
|
{intro x, induction x, reflexivity},
|
|
|
|
|
end,
|
|
|
|
|
apply is_trunc_equiv_closed, exact H2,
|
|
|
|
|
fapply is_trunc_equiv_closed,
|
|
|
|
|
{apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy},
|
|
|
|
|
fapply is_trunc_equiv_closed,
|
|
|
|
|
{apply fiber.sigma_char},
|
|
|
|
|
fapply is_contr_fiber_of_is_equiv,
|
|
|
|
|
exact to_is_equiv (arrow_equiv_arrow_left_rev A (equiv.mk f H)),
|
|
|
|
|
end
|
2015-08-31 16:23:34 +00:00
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_embedding_of_is_equiv [instance] [H : is_equiv f] : is_embedding f :=
|
|
|
|
|
λa a', _
|
2015-04-29 00:48:39 +00:00
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_equiv_of_is_surjective_of_is_embedding
|
2015-04-29 00:48:39 +00:00
|
|
|
|
[H : is_embedding f] [H' : is_surjective f] : is_equiv f :=
|
|
|
|
|
@is_equiv_of_is_contr_fun _ _ _
|
|
|
|
|
(λb, is_surjective_rec_on H' b
|
|
|
|
|
(λa, is_contr.mk a
|
|
|
|
|
(λa',
|
|
|
|
|
fiber_eq ((ap f)⁻¹ ((point_eq a) ⬝ (point_eq a')⁻¹))
|
|
|
|
|
(by rewrite (right_inv (ap f)); rewrite inv_con_cancel_right))))
|
|
|
|
|
|
2015-09-10 22:32:52 +00:00
|
|
|
|
definition is_split_surjective_of_is_retraction [H : is_retraction f] : is_split_surjective f :=
|
|
|
|
|
λb, fiber.mk (sect f b) (right_inverse f b)
|
|
|
|
|
|
|
|
|
|
definition is_constant_compose_point [constructor] [instance] (b : B)
|
|
|
|
|
: is_constant (f ∘ point : fiber f b → B) :=
|
|
|
|
|
is_constant.mk b (λv, by induction v with a p;exact p)
|
|
|
|
|
|
|
|
|
|
definition is_embedding_of_is_hprop_fiber [H : Π(b : B), is_hprop (fiber f b)] : is_embedding f :=
|
|
|
|
|
begin
|
|
|
|
|
intro a a',
|
|
|
|
|
fapply adjointify,
|
|
|
|
|
{ intro p, exact ap point (is_hprop.elim (fiber.mk a p) (fiber.mk a' idp))},
|
|
|
|
|
{ exact abstract begin
|
|
|
|
|
intro p, rewrite [-ap_compose],
|
|
|
|
|
apply @is_constant.eq _ _ _ (is_constant_ap (f ∘ point) (fiber.mk a p) (fiber.mk a' idp))
|
|
|
|
|
end end },
|
|
|
|
|
{ intro p, induction p, rewrite [▸*,is_hprop_elim_self]},
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- definition is_embedding_of_is_section_inv' [H : is_section f] {a : A} {b : B} (p : f a = b) :
|
|
|
|
|
-- a = retr f b :=
|
|
|
|
|
-- (left_inverse f a)⁻¹ ⬝ ap (retr f) p
|
|
|
|
|
|
|
|
|
|
-- definition is_embedding_of_is_section_inv [H : is_section f] {a a' : A} (p : f a = f a') :
|
|
|
|
|
-- a = a' :=
|
|
|
|
|
-- is_embedding_of_is_section_inv' f p ⬝ left_inverse f a'
|
|
|
|
|
|
|
|
|
|
-- definition is_embedding_of_is_section [constructor] [instance] [H : is_section f]
|
|
|
|
|
-- : is_embedding f :=
|
|
|
|
|
-- begin
|
|
|
|
|
-- intro a a',
|
|
|
|
|
-- fapply adjointify,
|
|
|
|
|
-- { exact is_embedding_of_is_section_inv f},
|
|
|
|
|
-- { exact abstract begin
|
|
|
|
|
-- assert H2 : Π {b : B} (p : f a = b), ap f (is_embedding_of_is_section_inv' f p) = p ⬝ _,
|
|
|
|
|
-- { }
|
|
|
|
|
-- -- intro p, rewrite [+ap_con,-ap_compose],
|
|
|
|
|
-- -- check_expr natural_square (left_inverse f),
|
|
|
|
|
-- -- induction H with g q, esimp,
|
|
|
|
|
-- end end },
|
|
|
|
|
-- { intro p, induction p, esimp, apply con.left_inv},
|
|
|
|
|
-- end
|
|
|
|
|
|
|
|
|
|
definition is_retraction_of_is_equiv [instance] [H : is_equiv f] : is_retraction f :=
|
|
|
|
|
is_retraction.mk f⁻¹ (right_inv f)
|
|
|
|
|
|
|
|
|
|
definition is_section_of_is_equiv [instance] [H : is_equiv f] : is_section f :=
|
|
|
|
|
is_section.mk f⁻¹ (left_inv f)
|
|
|
|
|
|
|
|
|
|
definition is_equiv_of_is_section_of_is_retraction [H1 : is_retraction f] [H2 : is_section f]
|
|
|
|
|
: is_equiv f :=
|
|
|
|
|
let g := sect f in let h := retr f in
|
|
|
|
|
adjointify f
|
|
|
|
|
(g)
|
|
|
|
|
(right_inverse f)
|
|
|
|
|
(λa, calc
|
|
|
|
|
g (f a) = h (f (g (f a))) : left_inverse
|
|
|
|
|
... = h (f a) : right_inverse f
|
|
|
|
|
... = a : left_inverse)
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
local attribute is_equiv_of_is_section_of_is_retraction [instance]
|
|
|
|
|
variable (f)
|
|
|
|
|
definition is_hprop_is_retraction_prod_is_section : is_hprop (is_retraction f × is_section f) :=
|
|
|
|
|
begin
|
|
|
|
|
apply is_hprop_of_imp_is_contr, intro H, induction H with H1 H2,
|
|
|
|
|
exact _,
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
variable {f}
|
|
|
|
|
|
|
|
|
|
local attribute is_hprop_is_retraction_prod_is_section [instance]
|
|
|
|
|
definition is_retraction_prod_is_section_equiv_is_equiv
|
|
|
|
|
: (is_retraction f × is_section f) ≃ is_equiv f :=
|
|
|
|
|
begin
|
|
|
|
|
apply equiv_of_is_hprop,
|
|
|
|
|
intro H, induction H, apply is_equiv_of_is_section_of_is_retraction,
|
|
|
|
|
intro H, split, repeat exact _
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
/-
|
|
|
|
|
The definitions
|
|
|
|
|
is_surjective_of_is_equiv
|
|
|
|
|
is_equiv_equiv_is_embedding_times_is_surjective
|
|
|
|
|
are in types.trunc
|
|
|
|
|
-/
|
|
|
|
|
|
2015-04-29 00:48:39 +00:00
|
|
|
|
end function
|