lean2/library/hott/funext_from_ua.lean

148 lines
5.7 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
import hott.equiv hott.funext_varieties
import data.prod data.sigma data.unit
open path function prod sigma truncation Equiv IsEquiv unit
definition isequiv_path {A B : Type} (H : A ≈ B) :=
(@IsEquiv.transport Type (λX, X) A B H)
definition equiv_path {A B : Type} (H : A ≈ B) : A ≃ B :=
Equiv.mk _ (isequiv_path H)
-- First, define an axiom free variant of Univalence
definition ua_type := Π (A B : Type), IsEquiv (@equiv_path A B)
context
universe variables l
parameter {ua : ua_type.{l+1}}
protected theorem ua_isequiv_postcompose {A B : Type.{l+1}} {C : Type}
{w : A → B} {H0 : IsEquiv w} : IsEquiv (@compose C A B w) :=
let w' := Equiv.mk w H0 in
let eqinv : A ≈ B := (equiv_path⁻¹ w') in
let eq' := equiv_path eqinv in
IsEquiv.adjointify (@compose C A B w)
(@compose C B A (IsEquiv.inv w))
(λ (x : C → B),
have eqretr : eq' ≈ w',
from (@retr _ _ (@equiv_path A B) (ua A B) w'),
have invs_eq : (equiv_fun eq')⁻¹ ≈ (equiv_fun w')⁻¹,
from inv_eq eq' w' eqretr,
have eqfin : (equiv_fun eq') ∘ ((equiv_fun eq')⁻¹ ∘ x) ≈ x,
from (λ p,
(@path.rec_on Type.{l+1} A
(λ B' p', Π (x' : C → B'), (equiv_fun (equiv_path p'))
∘ ((equiv_fun (equiv_path p'))⁻¹ ∘ x') ≈ x')
B p (λ x', idp))
) eqinv x,
have eqfin' : (equiv_fun w') ∘ ((equiv_fun eq')⁻¹ ∘ x) ≈ x,
from eqretr ▹ eqfin,
have eqfin'' : (equiv_fun w') ∘ ((equiv_fun w')⁻¹ ∘ x) ≈ x,
from invs_eq ▹ eqfin',
eqfin''
)
(λ (x : C → A),
have eqretr : eq' ≈ w',
from (@retr _ _ (@equiv_path A B) (ua A B) w'),
have invs_eq : (equiv_fun eq')⁻¹ ≈ (equiv_fun w')⁻¹,
from inv_eq eq' w' eqretr,
have eqfin : (equiv_fun eq')⁻¹ ∘ ((equiv_fun eq') ∘ x) ≈ x,
from (λ p, path.rec_on p idp) eqinv,
have eqfin' : (equiv_fun eq')⁻¹ ∘ ((equiv_fun w') ∘ x) ≈ x,
from eqretr ▹ eqfin,
have eqfin'' : (equiv_fun w')⁻¹ ∘ ((equiv_fun w') ∘ x) ≈ x,
from invs_eq ▹ eqfin',
eqfin''
)
-- We are ready to prove functional extensionality,
-- starting with the naive non-dependent version.
protected definition diagonal [reducible] (B : Type) : Type
:= Σ xy : B × B, pr₁ xy ≈ pr₂ xy
protected definition isequiv_src_compose {A B : Type}
: @IsEquiv (A → diagonal B)
(A → B)
(compose (pr₁ ∘ dpr1)) :=
@ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1)
(IsEquiv.adjointify (pr₁ ∘ dpr1)
(λ x, dpair (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x
(λ xy, prod.rec_on xy
(λ b c p, path.rec_on p idp))))
protected definition isequiv_tgt_compose {A B : Type}
: @IsEquiv (A → diagonal B)
(A → B)
(compose (pr₂ ∘ dpr1)) :=
@ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1)
(IsEquiv.adjointify (pr2 ∘ dpr1)
(λ x, dpair (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x
(λ xy, prod.rec_on xy
(λ b c p, path.rec_on p idp))))
theorem ua_implies_funext_nondep {A : Type} {B : Type.{l+1}}
: Π {f g : A → B}, f g → f ≈ g :=
(λ (f g : A → B) (p : f g),
let d := λ (x : A), dpair (f x , f x) idp in
let e := λ (x : A), dpair (f x , g x) (p x) in
let precomp1 := compose (pr₁ ∘ dpr1) in
have equiv1 [visible] : IsEquiv precomp1,
from @isequiv_src_compose A B,
have equiv2 [visible] : Π x y, IsEquiv (ap precomp1),
from IsEquiv.ap_closed precomp1,
have H' : Π (x y : A → diagonal B),
pr₁ ∘ dpr1 ∘ x ≈ pr₁ ∘ dpr1 ∘ y → x ≈ y,
from (λ x y, IsEquiv.inv (ap precomp1)),
have eq2 : pr₁ ∘ dpr1 ∘ d ≈ pr₁ ∘ dpr1 ∘ e,
from idp,
have eq0 : d ≈ e,
from H' d e eq2,
have eq1 : (pr₂ ∘ dpr1) ∘ d ≈ (pr₂ ∘ dpr1) ∘ e,
from ap _ eq0,
eq1
)
end
context
universe variables l
parameters {ua2 : ua_type.{l+2}} {ua3 : ua_type.{l+3}}
-- Now we use this to prove weak funext, which as we know
-- implies (with dependent eta) also the strong dependent funext.
theorem ua_implies_weak_funext : weak_funext.{l} :=
(λ (A : Type.{l+1}) (P : A → Type.{l+2}) allcontr,
let U := (λ (x : A), unit) in
have pequiv : Π (x : A), P x ≃ U x,
from (λ x, @equiv_contr_unit(P x) (allcontr x)),
have psim : Π (x : A), P x ≈ U x,
from (λ x, @IsEquiv.inv _ _
(@equiv_path (P x) (U x)) (ua2 (P x) (U x)) (pequiv x)),
have p : P ≈ U,
from @ua_implies_funext_nondep.{l+2 l+1} ua3 A Type.{l+2} P U psim,
have tU' : is_contr (A → unit),
from is_contr.mk (λ x, ⋆)
(λ f, @ua_implies_funext_nondep ua2 A unit (λ x, ⋆) f
(λ x, unit.rec_on (f x) idp)),
have tU : is_contr (Π x, U x),
from tU',
have tlast : is_contr (Πx, P x),
from path.transport _ (p⁻¹) tU,
tlast
)
end
exit
-- In the following we will proof function extensionality using the univalence axiom
-- TODO: check out why I have to generalize on A and P here
definition ua_implies_funext_type {ua : ua_type} : @funext_type :=
(λ A P, weak_funext_implies_funext (@ua_implies_visible]weak_funext ua))