feat(library/standard): port int, and reorganize a lot
This commit is contained in:
parent
ad26c7c93c
commit
148d475421
46 changed files with 2082 additions and 605 deletions
|
@ -2,8 +2,12 @@
|
|||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
|
||||
import .type logic.connectives.basic logic.classes.decidable logic.classes.inhabited
|
||||
using eq_proofs decidable
|
||||
import logic.connectives.basic logic.classes.decidable logic.classes.inhabited
|
||||
using eq_ops decidable
|
||||
|
||||
inductive bool : Type :=
|
||||
| ff : bool
|
||||
| tt : bool
|
||||
|
||||
namespace bool
|
||||
|
||||
|
@ -11,7 +15,7 @@ theorem induction_on {p : bool → Prop} (b : bool) (H0 : p ff) (H1 : p tt) : p
|
|||
bool_rec H0 H1 b
|
||||
|
||||
theorem inhabited_bool [instance] : inhabited bool :=
|
||||
inhabited_intro ff
|
||||
inhabited_mk ff
|
||||
|
||||
definition cond {A : Type} (b : bool) (t e : A) :=
|
||||
bool_rec e t b
|
|
@ -1,7 +0,0 @@
|
|||
data.bool
|
||||
=========
|
||||
|
||||
The type of booleans.
|
||||
|
||||
* [type](type.lean) : the datatype
|
||||
* [basic](basic.lean) : basic properties
|
|
@ -1,11 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
|
||||
namespace bool
|
||||
|
||||
inductive bool : Type :=
|
||||
| ff : bool
|
||||
| tt : bool
|
||||
|
||||
end bool
|
|
@ -7,7 +7,7 @@ Basic types:
|
|||
|
||||
* [empty](empty.lean) : the empty type
|
||||
* [unit](unit.lean) : the singleton type
|
||||
* [bool](bool/bool.md) : the boolean values
|
||||
* [bool](bool.lean) : the boolean values
|
||||
* [num](num.lean) : generic numerals
|
||||
* [string](string.lean) : ascii strings
|
||||
* [nat](nat/nat.md) : the natural numbers
|
||||
|
@ -20,5 +20,6 @@ Constructors:
|
|||
* [sigma](sigma.lean) : the dependent product
|
||||
* [option](option.lean)
|
||||
* [subtype](subtype.lean)
|
||||
* [quotient](quotient/quotient.md)
|
||||
* [list](list/list.md)
|
||||
* [set](set.lean)
|
6
library/standard/data/default.lean
Normal file
6
library/standard/data/default.lean
Normal file
|
@ -0,0 +1,6 @@
|
|||
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Jeremy Avigad
|
||||
|
||||
import .empty .unit .bool .num .string .nat .int
|
||||
import .prod .sum .sigma .option .subtype .quotient .list .set
|
1460
library/standard/data/int/basic.lean
Normal file
1460
library/standard/data/int/basic.lean
Normal file
File diff suppressed because it is too large
Load diff
|
@ -2,4 +2,4 @@
|
|||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Jeremy Avigad
|
||||
|
||||
import .type .basic
|
||||
import data.nat.basic
|
5
library/standard/data/int/int.default
Normal file
5
library/standard/data/int/int.default
Normal file
|
@ -0,0 +1,5 @@
|
|||
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Jeremy Avigad
|
||||
|
||||
import .basic
|
6
library/standard/data/int/int.md
Normal file
6
library/standard/data/int/int.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
data.int
|
||||
========
|
||||
|
||||
The integers.
|
||||
|
||||
* [basic](basic.lean) : the integers, with basic operations and order.
|
|
@ -15,7 +15,7 @@ import logic
|
|||
-- import if -- for find
|
||||
|
||||
using nat
|
||||
using eq_proofs
|
||||
using eq_ops
|
||||
|
||||
namespace list
|
||||
|
||||
|
|
|
@ -1,12 +1,11 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
--- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Floris van Doorn
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import logic data.num tools.tactic struc.binary
|
||||
using num tactic binary eq_proofs
|
||||
using num tactic binary eq_ops
|
||||
using decidable (hiding induction_on rec_on)
|
||||
using relation -- for subst_iff
|
||||
|
||||
-- TODO: this should go in tools, I think
|
||||
namespace helper_tactics
|
||||
|
@ -29,7 +28,19 @@ inductive nat : Type :=
|
|||
| zero : nat
|
||||
| succ : nat → nat
|
||||
|
||||
notation `ℕ` : max := nat
|
||||
notation `ℕ`:max := nat
|
||||
|
||||
theorem nat_rec_zero {P : ℕ → Type} (x : P zero) (f : ∀m, P m → P (succ m)) : nat_rec x f zero = x
|
||||
|
||||
theorem nat_rec_succ {P : ℕ → Type} (x : P zero) (f : ∀m, P m → P (succ m)) (n : ℕ) :
|
||||
nat_rec x f (succ n) = f n (nat_rec x f n)
|
||||
|
||||
theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P zero) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) :
|
||||
P a :=
|
||||
nat_rec H1 H2 a
|
||||
|
||||
definition rec_on {P : ℕ → Type} (n : ℕ) (H1 : P zero) (H2 : ∀m, P m → P (succ m)) : P n :=
|
||||
nat_rec H1 H2 n
|
||||
|
||||
|
||||
-- Coercion from num
|
||||
|
@ -42,30 +53,20 @@ definition to_nat [coercion] [inline] (n : num) : ℕ :=
|
|||
num_rec zero
|
||||
(λ n, pos_num_rec (succ zero) (λ n r, plus r (plus r (succ zero))) (λ n r, plus r r) n) n
|
||||
|
||||
theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat_rec x f 0 = x
|
||||
|
||||
theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ℕ) :
|
||||
nat_rec x f (succ n) = f n (nat_rec x f n)
|
||||
|
||||
theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) :
|
||||
P a :=
|
||||
nat_rec H1 H2 a
|
||||
|
||||
definition rec_on {P : ℕ → Type} (n : ℕ) (H1 : P 0) (H2 : ∀m, P m → P (succ m)) : P n :=
|
||||
nat_rec H1 H2 n
|
||||
|
||||
|
||||
-- Successor and predecessor
|
||||
-- -------------------------
|
||||
|
||||
-- TODO: this looks like a calc bug -- calc is using subst for iff, instead of =
|
||||
calc_subst subst
|
||||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0 :=
|
||||
assume H : succ n = 0,
|
||||
have H2 : true = false, from
|
||||
let f [inline] := (nat_rec false (fun a b, true)) in
|
||||
calc
|
||||
true = f (succ n) : _
|
||||
true = f (succ n) : rfl
|
||||
... = f 0 : {H}
|
||||
... = false : _,
|
||||
... = false : rfl,
|
||||
absurd H2 true_ne_false
|
||||
|
||||
-- add_rewrite succ_ne_zero
|
||||
|
@ -82,7 +83,7 @@ theorem zero_or_succ_pred (n : ℕ) : n = 0 ∨ n = succ (pred n) :=
|
|||
induction_on n
|
||||
(or_inl (refl 0))
|
||||
(take m IH, or_inr
|
||||
(show succ m = succ (pred (succ m)), from congr2 succ (pred_succ m⁻¹)))
|
||||
(show succ m = succ (pred (succ m)), from congr_arg succ (pred_succ m⁻¹)))
|
||||
|
||||
theorem zero_or_exists_succ (n : ℕ) : n = 0 ∨ ∃k, n = succ k :=
|
||||
or_imp_or (zero_or_succ_pred n) (assume H, H)
|
||||
|
@ -122,7 +123,7 @@ have general : ∀n, decidable (n = m), from
|
|||
(λ (n' : ℕ) (iH2 : decidable (n' = succ m')),
|
||||
have d1 : decidable (n' = m'), from iH1 n',
|
||||
decidable.rec_on d1
|
||||
(assume Heq : n' = m', inl (congr2 succ Heq))
|
||||
(assume Heq : n' = m', inl (congr_arg succ Heq))
|
||||
(assume Hne : n' ≠ m',
|
||||
have H1 : succ n' ≠ succ m', from
|
||||
assume Heq, absurd (succ_inj Heq) Hne,
|
||||
|
|
|
@ -1,14 +1,12 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
--- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Floris van Doorn
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import .basic
|
||||
using nat eq_proofs tactic
|
||||
import tools.fake_simplifier
|
||||
|
||||
-- until we have the simplifier...
|
||||
definition simp : tactic := apply @sorry
|
||||
using nat eq_ops tactic
|
||||
using fake_simplifier
|
||||
|
||||
-- TODO: move these to logic.connectives
|
||||
theorem or_imp_or_left {a b c : Prop} (H1 : a ∨ b) (H2 : a → c) : c ∨ b :=
|
||||
|
@ -30,7 +28,6 @@ namespace nat
|
|||
definition le (n m : ℕ) : Prop := exists k : nat, n + k = m
|
||||
|
||||
infix `<=`:50 := le
|
||||
|
||||
infix `≤`:50 := le
|
||||
|
||||
theorem le_intro {n m k : ℕ} (H : n + k = m) : n ≤ m :=
|
||||
|
|
|
@ -1,13 +1,15 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
--- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Floris van Doorn
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import data.nat.order
|
||||
using nat eq_proofs tactic
|
||||
import tools.fake_simplifier
|
||||
|
||||
using nat eq_ops tactic
|
||||
using helper_tactics
|
||||
|
||||
using fake_simplifier
|
||||
|
||||
namespace nat
|
||||
|
||||
-- data.nat.basic2
|
||||
|
|
|
@ -21,9 +21,9 @@ inductive num : Type :=
|
|||
| pos : pos_num → num
|
||||
|
||||
theorem inhabited_pos_num [instance] : inhabited pos_num :=
|
||||
inhabited_intro one
|
||||
inhabited_mk one
|
||||
|
||||
theorem inhabited_num [instance] : inhabited num :=
|
||||
inhabited_intro zero
|
||||
inhabited_mk zero
|
||||
|
||||
end num
|
|
@ -4,7 +4,7 @@
|
|||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import logic.connectives.basic logic.connectives.eq logic.classes.inhabited logic.classes.decidable
|
||||
using eq_proofs decidable
|
||||
using eq_ops decidable
|
||||
|
||||
namespace option
|
||||
inductive option (A : Type) : Type :=
|
||||
|
@ -32,10 +32,10 @@ assume H : none = some a, absurd
|
|||
(not_is_none_some a)
|
||||
|
||||
theorem some_inj {A : Type} {a₁ a₂ : A} (H : some a₁ = some a₂) : a₁ = a₂ :=
|
||||
congr2 (option_rec a₁ (λ a, a)) H
|
||||
congr_arg (option_rec a₁ (λ a, a)) H
|
||||
|
||||
theorem inhabited_option [instance] (A : Type) : inhabited (option A) :=
|
||||
inhabited_intro none
|
||||
inhabited_mk none
|
||||
|
||||
theorem decidable_eq [instance] {A : Type} {H : ∀a₁ a₂ : A, decidable (a₁ = a₂)} (o₁ o₂ : option A) : decidable (o₁ = o₂) :=
|
||||
rec_on o₁
|
||||
|
|
|
@ -4,6 +4,8 @@
|
|||
|
||||
import logic.classes.inhabited logic.connectives.eq
|
||||
|
||||
using inhabited
|
||||
|
||||
inductive prod (A B : Type) : Type :=
|
||||
| pair : A → B → prod A B
|
||||
|
||||
|
@ -39,7 +41,7 @@ section
|
|||
pair_destruct p1 (take a1 b1, pair_destruct p2 (take a2 b2 H1 H2, pair_eq H1 H2))
|
||||
|
||||
theorem prod_inhabited (H1 : inhabited A) (H2 : inhabited B) : inhabited (prod A B) :=
|
||||
inhabited_elim H1 (λa, inhabited_elim H2 (λb, inhabited_intro (pair a b)))
|
||||
inhabited_destruct H1 (λa, inhabited_destruct H2 (λb, inhabited_mk (pair a b)))
|
||||
|
||||
end
|
||||
|
||||
|
|
175
library/standard/data/quotient/aux.lean
Normal file
175
library/standard/data/quotient/aux.lean
Normal file
|
@ -0,0 +1,175 @@
|
|||
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Floris van Doorn
|
||||
|
||||
import logic ..prod struc.relation
|
||||
import tools.fake_simplifier
|
||||
|
||||
using prod eq_ops
|
||||
using fake_simplifier
|
||||
|
||||
-- TODO: calc bug -- remove
|
||||
calc_subst subst
|
||||
|
||||
|
||||
namespace quotient
|
||||
|
||||
-- auxliary facts about products
|
||||
-- -----------------------------
|
||||
|
||||
-- ### flip
|
||||
|
||||
definition flip {A B : Type} (a : A × B) : B × A := pair (pr2 a) (pr1 a)
|
||||
|
||||
theorem flip_def {A B : Type} (a : A × B) : flip a = pair (pr2 a) (pr1 a) := refl (flip a)
|
||||
|
||||
theorem flip_pair {A B : Type} (a : A) (b : B) : flip (pair a b) = pair b a := rfl
|
||||
|
||||
theorem flip_pr1 {A B : Type} (a : A × B) : pr1 (flip a) = pr2 a := rfl
|
||||
|
||||
theorem flip_pr2 {A B : Type} (a : A × B) : pr2 (flip a) = pr1 a := rfl
|
||||
|
||||
theorem flip_flip {A B : Type} (a : A × B) : flip (flip a) = a :=
|
||||
pair_destruct a (take x y, rfl)
|
||||
|
||||
theorem P_flip {A B : Type} {P : A → B → Prop} {a : A × B} (H : P (pr1 a) (pr2 a))
|
||||
: P (pr2 (flip a)) (pr1 (flip a)) :=
|
||||
(symm (flip_pr1 a)) ▸ (symm (flip_pr2 a)) ▸ H
|
||||
|
||||
theorem flip_inj {A B : Type} {a b : A × B} (H : flip a = flip b) : a = b :=
|
||||
have H2 : flip (flip a) = flip (flip b), from congr_arg flip H,
|
||||
show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2
|
||||
|
||||
-- ### coordinatewise unary maps
|
||||
|
||||
definition map_pair {A B : Type} (f : A → B) (a : A × A) : B × B :=
|
||||
pair (f (pr1 a)) (f (pr2 a))
|
||||
|
||||
theorem map_pair_def {A B : Type} (f : A → B) (a : A × A)
|
||||
: map_pair f a = pair (f (pr1 a)) (f (pr2 a)) :=
|
||||
rfl
|
||||
|
||||
theorem map_pair_pair {A B : Type} (f : A → B) (a a' : A)
|
||||
: map_pair f (pair a a') = pair (f a) (f a') :=
|
||||
(pr1_pair a a') ▸ (pr2_pair a a') ▸ (rfl)
|
||||
|
||||
theorem map_pair_pr1 {A B : Type} (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) :=
|
||||
pr1_pair _ _
|
||||
|
||||
theorem map_pair_pr2 {A B : Type} (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) :=
|
||||
pr2_pair _ _
|
||||
|
||||
-- ### coordinatewise binary maps
|
||||
|
||||
definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C :=
|
||||
pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b))
|
||||
|
||||
theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl
|
||||
|
||||
theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) :
|
||||
map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') :=
|
||||
calc
|
||||
map_pair2 f (pair a a') (pair b b')
|
||||
= pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b')))
|
||||
: {pr1_pair b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2_pair b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2_pair a a'}
|
||||
... = pair (f a b) (f a' b') : {pr1_pair a a'}
|
||||
|
||||
theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := pr1_pair _ _
|
||||
|
||||
theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := pr2_pair _ _
|
||||
|
||||
theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) :=
|
||||
have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _
|
||||
... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b
|
||||
... = f (pr1 (flip a)) (pr2 b) : {symm (flip_pr1 a)}
|
||||
... = f (pr1 (flip a)) (pr1 (flip b)) : {symm (flip_pr1 b)}
|
||||
... = pr1 (map_pair2 f (flip a) (flip b)) : symm (map_pair2_pr1 f _ _),
|
||||
have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _
|
||||
... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b
|
||||
... = f (pr2 (flip a)) (pr1 b) : {symm (flip_pr2 a)}
|
||||
... = f (pr2 (flip a)) (pr2 (flip b)) : {symm (flip_pr2 b)}
|
||||
... = pr2 (map_pair2 f (flip a) (flip b)) : symm (map_pair2_pr2 f _ _),
|
||||
pair_eq Hx Hy
|
||||
|
||||
-- add_rewrite flip_pr1 flip_pr2 flip_pair
|
||||
-- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair
|
||||
-- add_rewrite map_pair2_pr1 map_pair2_pr2 map_pair2_pair
|
||||
|
||||
theorem map_pair2_comm {A B : Type} {f : A → A → B} (Hcomm : ∀a b : A, f a b = f b a)
|
||||
(v w : A × A) : map_pair2 f v w = map_pair2 f w v :=
|
||||
have Hx : pr1 (map_pair2 f v w) = pr1 (map_pair2 f w v), from
|
||||
calc
|
||||
pr1 (map_pair2 f v w) = f (pr1 v) (pr1 w) : map_pair2_pr1 f v w
|
||||
... = f (pr1 w) (pr1 v) : Hcomm _ _
|
||||
... = pr1 (map_pair2 f w v) : symm (map_pair2_pr1 f w v),
|
||||
have Hy : pr2 (map_pair2 f v w) = pr2 (map_pair2 f w v), from
|
||||
calc
|
||||
pr2 (map_pair2 f v w) = f (pr2 v) (pr2 w) : map_pair2_pr2 f v w
|
||||
... = f (pr2 w) (pr2 v) : Hcomm _ _
|
||||
... = pr2 (map_pair2 f w v) : symm (map_pair2_pr2 f w v),
|
||||
pair_eq Hx Hy
|
||||
|
||||
theorem map_pair2_assoc {A : Type} {f : A → A → A}
|
||||
(Hassoc : ∀a b c : A, f (f a b) c = f a (f b c)) (u v w : A × A) :
|
||||
map_pair2 f (map_pair2 f u v) w = map_pair2 f u (map_pair2 f v w) :=
|
||||
have Hx : pr1 (map_pair2 f (map_pair2 f u v) w) =
|
||||
pr1 (map_pair2 f u (map_pair2 f v w)), from
|
||||
calc
|
||||
pr1 (map_pair2 f (map_pair2 f u v) w)
|
||||
= f (pr1 (map_pair2 f u v)) (pr1 w) : map_pair2_pr1 f _ _
|
||||
... = f (f (pr1 u) (pr1 v)) (pr1 w) : {map_pair2_pr1 f _ _}
|
||||
... = f (pr1 u) (f (pr1 v) (pr1 w)) : Hassoc (pr1 u) (pr1 v) (pr1 w)
|
||||
... = f (pr1 u) (pr1 (map_pair2 f v w)) : {symm (map_pair2_pr1 f _ _)}
|
||||
... = pr1 (map_pair2 f u (map_pair2 f v w)) : symm (map_pair2_pr1 f _ _),
|
||||
have Hy : pr2 (map_pair2 f (map_pair2 f u v) w) =
|
||||
pr2 (map_pair2 f u (map_pair2 f v w)), from
|
||||
calc
|
||||
pr2 (map_pair2 f (map_pair2 f u v) w)
|
||||
= f (pr2 (map_pair2 f u v)) (pr2 w) : map_pair2_pr2 f _ _
|
||||
... = f (f (pr2 u) (pr2 v)) (pr2 w) : {map_pair2_pr2 f _ _}
|
||||
... = f (pr2 u) (f (pr2 v) (pr2 w)) : Hassoc (pr2 u) (pr2 v) (pr2 w)
|
||||
... = f (pr2 u) (pr2 (map_pair2 f v w)) : {symm (map_pair2_pr2 f _ _)}
|
||||
... = pr2 (map_pair2 f u (map_pair2 f v w)) : symm (map_pair2_pr2 f _ _),
|
||||
pair_eq Hx Hy
|
||||
|
||||
theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a : A, f a e = a)
|
||||
(v : A × A) : map_pair2 f v (pair e e) = v :=
|
||||
have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from
|
||||
(calc
|
||||
pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by simp
|
||||
... = f (pr1 v) e : by simp
|
||||
... = pr1 v : Hid (pr1 v)),
|
||||
have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from
|
||||
(calc
|
||||
pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by simp
|
||||
... = f (pr2 v) e : by simp
|
||||
... = pr2 v : Hid (pr2 v)),
|
||||
prod_eq Hx Hy
|
||||
|
||||
theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a)
|
||||
(v : A × A) : map_pair2 f (pair e e) v = v :=
|
||||
have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from
|
||||
calc
|
||||
pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by simp
|
||||
... = f e (pr1 v) : by simp
|
||||
... = pr1 v : Hid (pr1 v),
|
||||
have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from
|
||||
calc
|
||||
pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by simp
|
||||
... = f e (pr2 v) : by simp
|
||||
... = pr2 v : Hid (pr2 v),
|
||||
prod_eq Hx Hy
|
||||
|
||||
opaque_hint (hiding flip map_pair map_pair2)
|
||||
|
||||
end quotient
|
|
@ -2,197 +2,11 @@
|
|||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Floris van Doorn
|
||||
|
||||
import logic tools.tactic .subtype logic.connectives.cast struc.relation data.prod
|
||||
import logic tools.tactic ..subtype logic.connectives.cast struc.relation data.prod
|
||||
import logic.connectives.instances
|
||||
import .aux
|
||||
|
||||
-- for now: to use substitution (iff_to_eq)
|
||||
import logic.axioms.classical
|
||||
|
||||
-- for the last section
|
||||
import logic.axioms.hilbert logic.axioms.funext
|
||||
|
||||
using relation prod tactic eq_proofs
|
||||
|
||||
|
||||
-- temporary: substiution for iff
|
||||
theorem substi {a b : Prop} {P : Prop → Prop} (H1 : a ↔ b) (H2 : P a) : P b :=
|
||||
subst (iff_to_eq H1) H2
|
||||
|
||||
theorem transi {a b c : Prop} (H1 : a ↔ b) (H2 : b ↔ c) : a ↔ c :=
|
||||
eq_to_iff (trans (iff_to_eq H1) (iff_to_eq H2))
|
||||
|
||||
theorem symmi {a b : Prop} (H : a ↔ b) : b ↔ a :=
|
||||
eq_to_iff (symm (iff_to_eq H))
|
||||
|
||||
-- until we have the simplifier...
|
||||
definition simp : tactic := apply @sorry
|
||||
|
||||
|
||||
-- TODO: find a better name, and move to logic.connectives.basic
|
||||
theorem and_inhabited_left {a : Prop} (b : Prop) (Ha : a) : a ∧ b ↔ b :=
|
||||
iff_intro (take Hab, and_elim_right Hab) (take Hb, and_intro Ha Hb)
|
||||
|
||||
|
||||
-- auxliary facts about products
|
||||
-- -----------------------------
|
||||
|
||||
-- TODO: move to data.prod?
|
||||
|
||||
-- ### flip
|
||||
|
||||
definition flip {A B : Type} (a : A × B) : B × A := pair (pr2 a) (pr1 a)
|
||||
|
||||
theorem flip_def {A B : Type} (a : A × B) : flip a = pair (pr2 a) (pr1 a) := refl (flip a)
|
||||
|
||||
theorem flip_pair {A B : Type} (a : A) (b : B) : flip (pair a b) = pair b a := rfl
|
||||
|
||||
theorem flip_pr1 {A B : Type} (a : A × B) : pr1 (flip a) = pr2 a := rfl
|
||||
|
||||
theorem flip_pr2 {A B : Type} (a : A × B) : pr2 (flip a) = pr1 a := rfl
|
||||
|
||||
theorem flip_flip {A B : Type} (a : A × B) : flip (flip a) = a :=
|
||||
pair_destruct a (take x y, rfl)
|
||||
|
||||
theorem P_flip {A B : Type} {P : A → B → Prop} {a : A × B} (H : P (pr1 a) (pr2 a))
|
||||
: P (pr2 (flip a)) (pr1 (flip a)) :=
|
||||
(symm (flip_pr1 a)) ▸ (symm (flip_pr2 a)) ▸ H
|
||||
|
||||
theorem flip_inj {A B : Type} {a b : A × B} (H : flip a = flip b) : a = b :=
|
||||
have H2 : flip (flip a) = flip (flip b), from congr2 flip H,
|
||||
show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2
|
||||
|
||||
-- ### coordinatewise unary maps
|
||||
|
||||
definition map_pair {A B : Type} (f : A → B) (a : A × A) : B × B :=
|
||||
pair (f (pr1 a)) (f (pr2 a))
|
||||
|
||||
theorem map_pair_def {A B : Type} (f : A → B) (a : A × A)
|
||||
: map_pair f a = pair (f (pr1 a)) (f (pr2 a)) :=
|
||||
rfl
|
||||
|
||||
theorem map_pair_pair {A B : Type} (f : A → B) (a a' : A)
|
||||
: map_pair f (pair a a') = pair (f a) (f a') :=
|
||||
(pr1_pair a a') ▸ (pr2_pair a a') ▸ (rfl)
|
||||
|
||||
theorem map_pair_pr1 {A B : Type} (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a)
|
||||
:= pr1_pair _ _
|
||||
|
||||
theorem map_pair_pr2 {A B : Type} (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a)
|
||||
:= pr2_pair _ _
|
||||
|
||||
-- ### coordinatewise binary maps
|
||||
|
||||
definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C
|
||||
:= pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b))
|
||||
|
||||
theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B)
|
||||
: map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl
|
||||
|
||||
theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B)
|
||||
: map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') :=
|
||||
calc
|
||||
map_pair2 f (pair a a') (pair b b')
|
||||
= pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b')))
|
||||
: {pr1_pair b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2_pair b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2_pair a a'}
|
||||
... = pair (f a b) (f a' b') : {pr1_pair a a'}
|
||||
|
||||
theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B)
|
||||
: pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := pr1_pair _ _
|
||||
|
||||
theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B)
|
||||
: pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := pr2_pair _ _
|
||||
|
||||
theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B)
|
||||
: flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) :=
|
||||
have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _
|
||||
... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b
|
||||
... = f (pr1 (flip a)) (pr2 b) : {symm (flip_pr1 a)}
|
||||
... = f (pr1 (flip a)) (pr1 (flip b)) : {symm (flip_pr1 b)}
|
||||
... = pr1 (map_pair2 f (flip a) (flip b)) : symm (map_pair2_pr1 f _ _),
|
||||
have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _
|
||||
... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b
|
||||
... = f (pr2 (flip a)) (pr1 b) : {symm (flip_pr2 a)}
|
||||
... = f (pr2 (flip a)) (pr2 (flip b)) : {symm (flip_pr2 b)}
|
||||
... = pr2 (map_pair2 f (flip a) (flip b)) : symm (map_pair2_pr2 f _ _),
|
||||
pair_eq Hx Hy
|
||||
|
||||
-- add_rewrite flip_pr1 flip_pr2 flip_pair
|
||||
-- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair
|
||||
-- add_rewrite map_pair2_pr1 map_pair2_pr2 map_pair2_pair
|
||||
|
||||
theorem map_pair2_comm {A B : Type} {f : A → A → B} (Hcomm : ∀a b : A, f a b = f b a)
|
||||
(v w : A × A) : map_pair2 f v w = map_pair2 f w v :=
|
||||
have Hx : pr1 (map_pair2 f v w) = pr1 (map_pair2 f w v), from
|
||||
calc
|
||||
pr1 (map_pair2 f v w) = f (pr1 v) (pr1 w) : map_pair2_pr1 f v w
|
||||
... = f (pr1 w) (pr1 v) : Hcomm _ _
|
||||
... = pr1 (map_pair2 f w v) : symm (map_pair2_pr1 f w v),
|
||||
have Hy : pr2 (map_pair2 f v w) = pr2 (map_pair2 f w v), from
|
||||
calc
|
||||
pr2 (map_pair2 f v w) = f (pr2 v) (pr2 w) : map_pair2_pr2 f v w
|
||||
... = f (pr2 w) (pr2 v) : Hcomm _ _
|
||||
... = pr2 (map_pair2 f w v) : symm (map_pair2_pr2 f w v),
|
||||
pair_eq Hx Hy
|
||||
|
||||
theorem map_pair2_assoc {A : Type} {f : A → A → A}
|
||||
(Hassoc : ∀a b c : A, f (f a b) c = f a (f b c)) (u v w : A × A) :
|
||||
map_pair2 f (map_pair2 f u v) w = map_pair2 f u (map_pair2 f v w) :=
|
||||
have Hx : pr1 (map_pair2 f (map_pair2 f u v) w) =
|
||||
pr1 (map_pair2 f u (map_pair2 f v w)), from
|
||||
calc
|
||||
pr1 (map_pair2 f (map_pair2 f u v) w)
|
||||
= f (pr1 (map_pair2 f u v)) (pr1 w) : map_pair2_pr1 f _ _
|
||||
... = f (f (pr1 u) (pr1 v)) (pr1 w) : {map_pair2_pr1 f _ _}
|
||||
... = f (pr1 u) (f (pr1 v) (pr1 w)) : Hassoc (pr1 u) (pr1 v) (pr1 w)
|
||||
... = f (pr1 u) (pr1 (map_pair2 f v w)) : {symm (map_pair2_pr1 f _ _)}
|
||||
... = pr1 (map_pair2 f u (map_pair2 f v w)) : symm (map_pair2_pr1 f _ _),
|
||||
have Hy : pr2 (map_pair2 f (map_pair2 f u v) w) =
|
||||
pr2 (map_pair2 f u (map_pair2 f v w)), from
|
||||
calc
|
||||
pr2 (map_pair2 f (map_pair2 f u v) w)
|
||||
= f (pr2 (map_pair2 f u v)) (pr2 w) : map_pair2_pr2 f _ _
|
||||
... = f (f (pr2 u) (pr2 v)) (pr2 w) : {map_pair2_pr2 f _ _}
|
||||
... = f (pr2 u) (f (pr2 v) (pr2 w)) : Hassoc (pr2 u) (pr2 v) (pr2 w)
|
||||
... = f (pr2 u) (pr2 (map_pair2 f v w)) : {symm (map_pair2_pr2 f _ _)}
|
||||
... = pr2 (map_pair2 f u (map_pair2 f v w)) : symm (map_pair2_pr2 f _ _),
|
||||
pair_eq Hx Hy
|
||||
|
||||
theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a : A, f a e = a)
|
||||
(v : A × A) : map_pair2 f v (pair e e) = v :=
|
||||
have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from
|
||||
(calc
|
||||
pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by simp
|
||||
... = f (pr1 v) e : by simp
|
||||
... = pr1 v : Hid (pr1 v)),
|
||||
have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from
|
||||
(calc
|
||||
pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by simp
|
||||
... = f (pr2 v) e : by simp
|
||||
... = pr2 v : Hid (pr2 v)),
|
||||
prod_eq Hx Hy
|
||||
|
||||
theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a)
|
||||
(v : A × A) : map_pair2 f (pair e e) v = v :=
|
||||
have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from
|
||||
calc
|
||||
pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by simp
|
||||
... = f e (pr1 v) : by simp
|
||||
... = pr1 v : Hid (pr1 v),
|
||||
have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from
|
||||
calc
|
||||
pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by simp
|
||||
... = f e (pr2 v) : by simp
|
||||
... = pr2 v : Hid (pr2 v),
|
||||
prod_eq Hx Hy
|
||||
|
||||
opaque_hint (hiding flip map_pair map_pair2)
|
||||
|
||||
using relation prod inhabited nonempty tactic eq_ops
|
||||
|
||||
-- Theory data.quotient
|
||||
-- ====================
|
||||
|
@ -205,7 +19,7 @@ using subtype
|
|||
-- ---------------------
|
||||
|
||||
-- TODO: make this a structure
|
||||
definition is_quotient {A B : Type} (R : A → A → Prop) (abs : A → B) (rep : B → A) : Prop :=
|
||||
abbreviation is_quotient {A B : Type} (R : A → A → Prop) (abs : A → B) (rep : B → A) : Prop :=
|
||||
(∀b, abs (rep b) = b) ∧
|
||||
(∀b, R (rep b) (rep b)) ∧
|
||||
(∀r s, R r s ↔ (R r r ∧ R s s ∧ abs r = abs s))
|
||||
|
@ -224,8 +38,8 @@ and_intro H1 (and_intro H2 H3)
|
|||
-- (take r s,
|
||||
-- have H4 : R r s ↔ R s s ∧ abs r = abs s,
|
||||
-- from
|
||||
-- gensubst.subst (relation.operations.symm (and_inhabited_left _ (H1 s))) (H3 r s),
|
||||
-- gensubst.subst (relation.operations.symm (and_inhabited_left _ (H1 r))) H4)
|
||||
-- gensubst.subst (relation.operations.symm (and_absorb_left _ (H1 s))) (H3 r s),
|
||||
-- gensubst.subst (relation.operations.symm (and_absorb_left _ (H1 r))) H4)
|
||||
|
||||
-- these work now, but the above still does not
|
||||
-- theorem test (a b c : Prop) (P : Prop → Prop) (H1 : a ↔ b) (H2 : c ∧ a) : c ∧ b :=
|
||||
|
@ -233,7 +47,7 @@ and_intro H1 (and_intro H2 H3)
|
|||
|
||||
-- theorem test2 {A : Type} {R : A → A → Prop} (Q : Prop) (r s : A)
|
||||
-- (H3 : R r s ↔ Q) (H1 : R s s) : Q ↔ (R s s ∧ Q) :=
|
||||
-- relation.operations.symm (and_inhabited_left Q H1)
|
||||
-- relation.operations.symm (and_absorb_left Q H1)
|
||||
|
||||
-- theorem test3 {A : Type} {R : A → A → Prop} (Q : Prop) (r s : A)
|
||||
-- (H3 : R r s ↔ Q) (H1 : R s s) : R r s ↔ (R s s ∧ Q) :=
|
||||
|
@ -241,7 +55,10 @@ and_intro H1 (and_intro H2 H3)
|
|||
|
||||
-- theorem test4 {A : Type} {R : A → A → Prop} (Q : Prop) (r s : A)
|
||||
-- (H3 : R r s ↔ Q) (H1 : R s s) : R r s ↔ (R s s ∧ Q) :=
|
||||
-- gensubst.subst (relation.operations.symm (and_inhabited_left Q H1)) H3
|
||||
-- gensubst.subst (relation.operations.symm (and_absorb_left Q H1)) H3
|
||||
|
||||
theorem and_absorb_left {a : Prop} (b : Prop) (Ha : a) : a ∧ b ↔ b :=
|
||||
iff_intro (assume Hab, and_elim_right Hab) (assume Hb, and_intro Ha Hb)
|
||||
|
||||
theorem intro_refl {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
|
||||
(H1 : reflexive R) (H2 : ∀b, abs (rep b) = b)
|
||||
|
@ -252,8 +69,20 @@ intro
|
|||
(take r s,
|
||||
have H4 : R r s ↔ R s s ∧ abs r = abs s,
|
||||
from
|
||||
substi (symmi (and_inhabited_left _ (H1 s))) (H3 r s),
|
||||
substi (symmi (and_inhabited_left _ (H1 r))) H4)
|
||||
subst_iff (iff_symm (and_absorb_left _ (H1 s))) (H3 r s),
|
||||
subst_iff (iff_symm (and_absorb_left _ (H1 r))) H4)
|
||||
|
||||
-- theorem intro_refl {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
|
||||
-- (H1 : reflexive R) (H2 : ∀b, abs (rep b) = b)
|
||||
-- (H3 : ∀r s, R r s ↔ abs r = abs s) : is_quotient R abs rep :=
|
||||
-- intro
|
||||
-- H2
|
||||
-- (take b, H1 (rep b))
|
||||
-- (take r s,
|
||||
-- have H4 : R r s ↔ R s s ∧ abs r = abs s,
|
||||
-- from
|
||||
-- substi (iff_symm (and_absorb_left _ (H1 s))) (H3 r s),
|
||||
-- substi (iff_symm (and_absorb_left _ (H1 r))) H4)
|
||||
|
||||
theorem abs_rep {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
|
||||
(Q : is_quotient R abs rep) (b : B) : abs (rep b) = b :=
|
||||
|
@ -414,10 +243,10 @@ opaque_hint (hiding rec rec_constant rec_binary quotient_map quotient_map_binary
|
|||
abbreviation image {A B : Type} (f : A → B) := subtype (fun b, ∃a, f a = b)
|
||||
|
||||
theorem image_inhabited {A B : Type} (f : A → B) (H : inhabited A) : inhabited (image f) :=
|
||||
inhabited_intro (tag (f (default A)) (exists_intro (default A) rfl))
|
||||
inhabited_mk (tag (f (default A)) (exists_intro (default A) rfl))
|
||||
|
||||
theorem image_inhabited2 {A B : Type} (f : A → B) (a : A) : inhabited (image f) :=
|
||||
image_inhabited f (inhabited_intro a)
|
||||
image_inhabited f (inhabited_mk a)
|
||||
|
||||
definition fun_image {A B : Type} (f : A → B) (a : A) : image f :=
|
||||
tag (f a) (exists_intro a rfl)
|
||||
|
@ -446,7 +275,7 @@ theorem fun_image_eq {A B : Type} (f : A → B) (a a' : A)
|
|||
iff_intro
|
||||
(assume H : f a = f a', tag_eq H)
|
||||
(assume H : fun_image f a = fun_image f a',
|
||||
subst (subst (congr2 elt_of H) (elt_of_fun_image f a)) (elt_of_fun_image f a'))
|
||||
subst (subst (congr_arg elt_of H) (elt_of_fun_image f a)) (elt_of_fun_image f a'))
|
||||
|
||||
theorem idempotent_image_elt_of {A : Type} {f : A → A} (H : ∀a, f (f a) = f a) (u : image f)
|
||||
: fun_image f (elt_of u) = u :=
|
||||
|
@ -508,89 +337,30 @@ intro
|
|||
obtain (a : A) (Ha : f a = elt_of u), from image_elt_of u,
|
||||
subst Ha (@representative_map_refl_rep A R f H1 H2 a))
|
||||
(take a a',
|
||||
substi (fun_image_eq f a a') (H2 a a'))
|
||||
|
||||
-- TODO: fix these
|
||||
-- e.g. in the next three lemmas, we should not need to specify the equivalence relation
|
||||
-- but the class inference finds reflexive.class eq
|
||||
theorem equiv_is_refl {A : Type} {R : A → A → Prop} (equiv : is_equivalence.class R) :=
|
||||
@operations.refl _ R (@is_equivalence.is_reflexive _ _ equiv)
|
||||
-- we should be able to write
|
||||
-- @operations.refl _ R _
|
||||
|
||||
theorem equiv_is_symm {A : Type} {R : A → A → Prop} (equiv : is_equivalence.class R) :=
|
||||
@operations.symm _ R (@is_equivalence.is_symmetric _ _ equiv)
|
||||
|
||||
theorem equiv_is_trans {A : Type} {R : A → A → Prop} (equiv : is_equivalence.class R) :=
|
||||
@operations.trans _ R (@is_equivalence.is_transitive _ _ equiv)
|
||||
subst_iff (fun_image_eq f a a') (H2 a a'))
|
||||
|
||||
theorem representative_map_equiv_inj {A : Type} {R : A → A → Prop}
|
||||
(equiv : is_equivalence.class R) {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b → f a = f b)
|
||||
(equiv : is_equivalence R) {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b → f a = f b)
|
||||
{a b : A} (H3 : f a = f b) : R a b :=
|
||||
-- have symmR : symmetric R, from @relation.operations.symm _ R _,
|
||||
have symmR : symmetric R, from equiv_is_symm equiv,
|
||||
have transR : transitive R, from equiv_is_trans equiv,
|
||||
have symmR : symmetric R, from is_symmetric.infer R,
|
||||
have transR : transitive R, from is_transitive.infer R,
|
||||
show R a b, from
|
||||
have H2 : R a (f b), from subst H3 (H1 a),
|
||||
have H3 : R (f b) b, from symmR _ _ (H1 b),
|
||||
transR _ _ _ H2 H3
|
||||
have H3 : R (f b) b, from symmR (H1 b),
|
||||
transR H2 H3
|
||||
|
||||
theorem representative_map_to_quotient_equiv {A : Type} {R : A → A → Prop}
|
||||
(equiv : is_equivalence.class R) {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b → f a = f b)
|
||||
(equiv : is_equivalence R) {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b → f a = f b)
|
||||
: @is_quotient A (image f) R (fun_image f) elt_of :=
|
||||
representative_map_to_quotient
|
||||
H1
|
||||
(take a b,
|
||||
have reflR : reflexive R, from equiv_is_refl equiv,
|
||||
have reflR : reflexive R, from is_reflexive.infer R,
|
||||
have H3 : f a = f b → R a b, from representative_map_equiv_inj equiv H1 H2,
|
||||
have H4 : R a b ↔ f a = f b, from iff_intro (H2 a b) H3,
|
||||
have H5 : R a b ↔ R b b ∧ f a = f b,
|
||||
from substi (symmi (and_inhabited_left _ (reflR b))) H4,
|
||||
substi (symmi (and_inhabited_left _ (reflR a))) H5)
|
||||
|
||||
-- TODO: split this into another file -- it depends on hilbert
|
||||
|
||||
-- abstract quotient
|
||||
-- -----------------
|
||||
|
||||
definition prelim_map {A : Type} (R : A → A → Prop) (a : A) :=
|
||||
-- TODO: it is interesting how the elaborator fails here
|
||||
-- epsilon (fun b, R a b)
|
||||
@epsilon _ (nonempty_intro a) (fun b, R a b)
|
||||
|
||||
-- TODO: only needed R reflexive (or weaker: R a a)
|
||||
theorem prelim_map_rel {A : Type} {R : A → A → Prop} (H : is_equivalence.class R) (a : A)
|
||||
: R a (prelim_map R a) :=
|
||||
have reflR : reflexive R, from equiv_is_refl H,
|
||||
epsilon_spec (exists_intro a (reflR a))
|
||||
|
||||
-- TODO: only needed: R PER
|
||||
theorem prelim_map_congr {A : Type} {R : A → A → Prop} (H1 : is_equivalence.class R) {a b : A}
|
||||
(H2 : R a b) : prelim_map R a = prelim_map R b :=
|
||||
have symmR : symmetric R, from equiv_is_symm H1,
|
||||
have transR : transitive R, from equiv_is_trans H1,
|
||||
have H3 : ∀c, R a c ↔ R b c, from
|
||||
take c,
|
||||
iff_intro
|
||||
(assume H4 : R a c, transR b a c (symmR a b H2) H4)
|
||||
(assume H4 : R b c, transR a b c H2 H4),
|
||||
have H4 : (fun c, R a c) = (fun c, R b c), from funext (take c, iff_to_eq (H3 c)),
|
||||
show @epsilon _ (nonempty_intro a) (λc, R a c) = @epsilon _ (nonempty_intro b) (λc, R b c),
|
||||
from congr2 _ H4
|
||||
|
||||
definition quotient {A : Type} (R : A → A → Prop) : Type := image (prelim_map R)
|
||||
|
||||
definition quotient_abs {A : Type} (R : A → A → Prop) : A → quotient R :=
|
||||
fun_image (prelim_map R)
|
||||
|
||||
definition quotient_elt_of {A : Type} (R : A → A → Prop) : quotient R → A := elt_of
|
||||
|
||||
theorem quotient_is_quotient {A : Type} (R : A → A → Prop) (H : is_equivalence.class R)
|
||||
: is_quotient R (quotient_abs R) (quotient_elt_of R) :=
|
||||
representative_map_to_quotient_equiv
|
||||
H
|
||||
(prelim_map_rel H)
|
||||
(@prelim_map_congr _ _ H)
|
||||
from subst_iff (iff_symm (and_absorb_left _ (reflR b))) H4,
|
||||
subst_iff (iff_symm (and_absorb_left _ (reflR a))) H5)
|
||||
|
||||
-- previously:
|
||||
-- opaque_hint (hiding fun_image rec is_quotient prelim_map)
|
56
library/standard/data/quotient/classical.lean
Normal file
56
library/standard/data/quotient/classical.lean
Normal file
|
@ -0,0 +1,56 @@
|
|||
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Floris van Doorn
|
||||
|
||||
import struc.relation logic.classes.nonempty data.subtype
|
||||
import .basic
|
||||
import logic.axioms.classical logic.axioms.hilbert logic.axioms.funext
|
||||
|
||||
namespace quotient
|
||||
|
||||
using relation nonempty subtype
|
||||
|
||||
-- abstract quotient
|
||||
-- -----------------
|
||||
|
||||
definition prelim_map {A : Type} (R : A → A → Prop) (a : A) :=
|
||||
-- TODO: it is interesting how the elaborator fails here
|
||||
-- epsilon (fun b, R a b)
|
||||
@epsilon _ (nonempty_intro a) (fun b, R a b)
|
||||
|
||||
-- TODO: only needed R reflexive (or weaker: R a a)
|
||||
theorem prelim_map_rel {A : Type} {R : A → A → Prop} (H : is_equivalence R) (a : A)
|
||||
: R a (prelim_map R a) :=
|
||||
have reflR : reflexive R, from is_reflexive.infer R,
|
||||
epsilon_spec (exists_intro a (reflR a))
|
||||
|
||||
-- TODO: only needed: R PER
|
||||
theorem prelim_map_congr {A : Type} {R : A → A → Prop} (H1 : is_equivalence R) {a b : A}
|
||||
(H2 : R a b) : prelim_map R a = prelim_map R b :=
|
||||
have symmR : symmetric R, from is_symmetric.infer R,
|
||||
have transR : transitive R, from is_transitive.infer R,
|
||||
have H3 : ∀c, R a c ↔ R b c, from
|
||||
take c,
|
||||
iff_intro
|
||||
(assume H4 : R a c, transR (symmR H2) H4)
|
||||
(assume H4 : R b c, transR H2 H4),
|
||||
have H4 : (fun c, R a c) = (fun c, R b c), from funext (take c, iff_to_eq (H3 c)),
|
||||
show @epsilon _ (nonempty_intro a) (λc, R a c) = @epsilon _ (nonempty_intro b) (λc, R b c),
|
||||
from congr_arg _ H4
|
||||
|
||||
definition quotient {A : Type} (R : A → A → Prop) : Type := image (prelim_map R)
|
||||
|
||||
definition quotient_abs {A : Type} (R : A → A → Prop) : A → quotient R :=
|
||||
fun_image (prelim_map R)
|
||||
|
||||
definition quotient_elt_of {A : Type} (R : A → A → Prop) : quotient R → A := elt_of
|
||||
|
||||
-- TODO: I had to make is_quotient transparent -- change this?
|
||||
theorem quotient_is_quotient {A : Type} (R : A → A → Prop) (H : is_equivalence R)
|
||||
: is_quotient R (quotient_abs R) (quotient_elt_of R) :=
|
||||
representative_map_to_quotient_equiv
|
||||
H
|
||||
(prelim_map_rel H)
|
||||
(@prelim_map_congr _ _ H)
|
||||
|
||||
end quotient
|
5
library/standard/data/quotient/default.lean
Normal file
5
library/standard/data/quotient/default.lean
Normal file
|
@ -0,0 +1,5 @@
|
|||
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Jeremy Avigad
|
||||
|
||||
import .basic .classical
|
6
library/standard/data/quotient/quotient.md
Normal file
6
library/standard/data/quotient/quotient.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
data.quotient
|
||||
=============
|
||||
|
||||
* [aux](aux.lean) : auxiliary facts about products
|
||||
* [basic](basic.lean) : the constructive core of the quotient construction
|
||||
* [classical](classical.lean) : the classical version, using Hilbert choice
|
|
@ -5,7 +5,7 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import logic.axioms.funext data.bool
|
||||
using eq_proofs bool
|
||||
using eq_ops bool
|
||||
|
||||
namespace set
|
||||
definition set (T : Type) := T → bool
|
||||
|
|
|
@ -4,6 +4,8 @@
|
|||
|
||||
import logic.classes.inhabited logic.connectives.eq
|
||||
|
||||
using inhabited
|
||||
|
||||
inductive sigma {A : Type} (B : A → Type) : Type :=
|
||||
| dpair : Πx : A, B x → sigma B
|
||||
|
||||
|
@ -48,7 +50,7 @@ section
|
|||
|
||||
theorem sigma_inhabited (H1 : inhabited A) (H2 : inhabited (B (default A))) :
|
||||
inhabited (sigma B) :=
|
||||
inhabited_elim H1 (λa, inhabited_elim H2 (λb, inhabited_intro (dpair (default A) b)))
|
||||
inhabited_destruct H1 (λa, inhabited_destruct H2 (λb, inhabited_mk (dpair (default A) b)))
|
||||
|
||||
end
|
||||
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import data.bool
|
||||
using bool
|
||||
|
||||
using bool inhabited
|
||||
|
||||
namespace string
|
||||
|
||||
inductive char : Type :=
|
||||
| ascii : bool → bool → bool → bool → bool → bool → bool → bool → char
|
||||
|
||||
|
@ -16,9 +16,9 @@ inductive string : Type :=
|
|||
| str : char → string → string
|
||||
|
||||
theorem inhabited_char [instance] : inhabited char :=
|
||||
inhabited_intro (ascii ff ff ff ff ff ff ff ff)
|
||||
inhabited_mk (ascii ff ff ff ff ff ff ff ff)
|
||||
|
||||
theorem inhabited_string [instance] : inhabited string :=
|
||||
inhabited_intro empty
|
||||
inhabited_mk empty
|
||||
|
||||
end string
|
||||
|
|
|
@ -17,7 +17,7 @@ theorem unit_eq (a b : unit) : a = b :=
|
|||
unit_rec (unit_rec (refl ⋆) b) a
|
||||
|
||||
theorem inhabited_unit [instance] : inhabited unit :=
|
||||
inhabited_intro ⋆
|
||||
inhabited_mk ⋆
|
||||
|
||||
theorem decidable_eq [instance] (a b : unit) : decidable (a = b) :=
|
||||
inl (unit_eq a b)
|
||||
|
|
|
@ -1,40 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
|
||||
-- The predicative version of inhabited
|
||||
-- TODO: restore instances
|
||||
|
||||
-- import logic bool
|
||||
-- using logic
|
||||
|
||||
namespace predicative
|
||||
|
||||
inductive inhabited (A : Type) : Type :=
|
||||
| inhabited_intro : A → inhabited A
|
||||
|
||||
theorem inhabited_elim {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B
|
||||
:= inhabited_rec H2 H1
|
||||
|
||||
end predicative
|
||||
|
||||
-- theorem inhabited_fun [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B)
|
||||
-- := inhabited_elim H (take (b : B), inhabited_intro (λ a : A, b))
|
||||
|
||||
-- theorem inhabited_sum_left [instance] {A : Type} (B : Type) (H : inhabited A) : inhabited (A + B)
|
||||
-- := inhabited_elim H (λ a, inhabited_intro (inl B a))
|
||||
|
||||
-- theorem inhabited_sum_right [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A + B)
|
||||
-- := inhabited_elim H (λ b, inhabited_intro (inr A b))
|
||||
|
||||
-- theorem inhabited_product [instance] {A : Type} {B : Type} (Ha : inhabited A) (Hb : inhabited B) : inhabited (A × B)
|
||||
-- := inhabited_elim Ha (λ a, (inhabited_elim Hb (λ b, inhabited_intro (a, b))))
|
||||
|
||||
-- theorem inhabited_bool [instance] : inhabited bool
|
||||
-- := inhabited_intro true
|
||||
|
||||
-- theorem inhabited_unit [instance] : inhabited unit
|
||||
-- := inhabited_intro ⋆
|
||||
|
||||
-- theorem inhabited_sigma_pr1 {A : Type} {B : A → Type} (p : Σ x, B x) : inhabited A
|
||||
-- := inhabited_intro (dpr1 p)
|
|
@ -4,9 +4,9 @@
|
|||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import logic.connectives.basic logic.connectives.quantifiers logic.connectives.cast
|
||||
import logic.connectives.basic logic.connectives.quantifiers logic.connectives.cast struc.relation
|
||||
|
||||
using eq_proofs
|
||||
using eq_ops
|
||||
|
||||
axiom prop_complete (a : Prop) : a = true ∨ a = false
|
||||
|
||||
|
@ -15,6 +15,9 @@ or_elim (prop_complete a)
|
|||
(assume Ht : a = true, Ht⁻¹ ▸ H1)
|
||||
(assume Hf : a = false, Hf⁻¹ ▸ H2)
|
||||
|
||||
theorem case_on (a : Prop) {P : Prop → Prop} (H1 : P true) (H2 : P false) : P a :=
|
||||
case P H1 H2 a
|
||||
|
||||
theorem em (a : Prop) : a ∨ ¬a :=
|
||||
or_elim (prop_complete a)
|
||||
(assume Ht : a = true, or_inl (eqt_elim Ht))
|
||||
|
@ -163,3 +166,12 @@ theorem peirce (a b : Prop) : ((a → b) → a) → a :=
|
|||
assume H, by_contradiction (assume Hna : ¬a,
|
||||
have Hnna : ¬¬a, from not_implies_left (mt H Hna),
|
||||
absurd (not_not_elim Hnna) Hna)
|
||||
|
||||
-- with classical logic, every predicate respects iff
|
||||
|
||||
using relation
|
||||
theorem iff_congr [instance] (P : Prop → Prop) : congr iff iff P :=
|
||||
congr_mk
|
||||
(take (a b : Prop),
|
||||
assume H : a ↔ b,
|
||||
show P a ↔ P b, from eq_to_iff (subst (iff_to_eq H) (refl (P a))))
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
-- Author: Leonardo de Moura
|
||||
|
||||
import logic.axioms.hilbert logic.axioms.funext
|
||||
using eq_proofs
|
||||
using eq_ops nonempty inhabited
|
||||
|
||||
-- Diaconescu’s theorem
|
||||
-- Show that Excluded middle follows from
|
||||
|
|
|
@ -6,7 +6,7 @@ import logic.connectives.eq logic.connectives.quantifiers
|
|||
import logic.classes.inhabited logic.classes.nonempty
|
||||
import data.subtype data.sum
|
||||
|
||||
using subtype
|
||||
using subtype inhabited nonempty
|
||||
|
||||
-- logic.axioms.hilbert
|
||||
-- ====================
|
||||
|
@ -25,7 +25,7 @@ nonempty_elim H (take x, exists_intro x trivial)
|
|||
|
||||
theorem nonempty_imp_inhabited {A : Type} (H : nonempty A) : inhabited A :=
|
||||
let u : {x : A | (∃x : A, true) → true} := strong_indefinite_description (λa, true) H in
|
||||
inhabited_intro (elt_of u)
|
||||
inhabited_mk (elt_of u)
|
||||
|
||||
theorem inhabited_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : inhabited A :=
|
||||
nonempty_imp_inhabited (obtain w Hw, from H, nonempty_intro w)
|
||||
|
|
|
@ -6,27 +6,29 @@
|
|||
|
||||
import logic.classes.inhabited logic.connectives.cast
|
||||
|
||||
using inhabited
|
||||
|
||||
-- Pi extensionality
|
||||
axiom piext {A : Type} {B B' : A → Type} {H : inhabited (Π x, B x)} :
|
||||
(Π x, B x) = (Π x, B' x) → B = B'
|
||||
|
||||
theorem cast_app {A : Type} {B B' : A → Type} (H : (Π x, B x) = (Π x, B' x)) (f : Π x, B x)
|
||||
(a : A) : cast H f a == f a :=
|
||||
have Hi [fact] : inhabited (Π x, B x), from inhabited_intro f,
|
||||
have Hi [fact] : inhabited (Π x, B x), from inhabited_mk f,
|
||||
have Hb : B = B', from piext H,
|
||||
cast_app' Hb f a
|
||||
|
||||
theorem hcongr1 {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A)
|
||||
theorem hcongr_fun {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A)
|
||||
(H : f == f') : f a == f' a :=
|
||||
have Hi [fact] : inhabited (Π x, B x), from inhabited_intro f,
|
||||
have Hi [fact] : inhabited (Π x, B x), from inhabited_mk f,
|
||||
have Hb : B = B', from piext (type_eq H),
|
||||
hcongr1' a H Hb
|
||||
hcongr_fun' a H Hb
|
||||
|
||||
theorem hcongr {A A' : Type} {B : A → Type} {B' : A' → Type}
|
||||
{f : Π x, B x} {f' : Π x, B' x} {a : A} {a' : A'}
|
||||
(Hff' : f == f') (Haa' : a == a') : f a == f' a' :=
|
||||
have H1 : ∀ (B B' : A → Type) (f : Π x, B x) (f' : Π x, B' x), f == f' → f a == f' a, from
|
||||
take B B' f f' e, hcongr1 a e,
|
||||
take B B' f f' e, hcongr_fun a e,
|
||||
have H2 : ∀ (B : A → Type) (B' : A' → Type) (f : Π x, B x) (f' : Π x, B' x),
|
||||
f == f' → f a == f' a', from hsubst Haa' H1,
|
||||
H2 B B' f f' Hff'
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import logic.axioms.classical logic.axioms.hilbert logic.classes.decidable
|
||||
using decidable
|
||||
using decidable inhabited nonempty
|
||||
|
||||
-- Excluded middle + Hilbert implies every proposition is decidable
|
||||
|
||||
|
|
|
@ -27,12 +27,12 @@ decidable_rec H1 H2 H
|
|||
theorem irrelevant {p : Prop} (d1 d2 : decidable p) : d1 = d2 :=
|
||||
decidable_rec
|
||||
(assume Hp1 : p, decidable_rec
|
||||
(assume Hp2 : p, congr2 inl (refl Hp1)) -- using proof irrelevance for Prop
|
||||
(assume Hp2 : p, congr_arg inl (refl Hp1)) -- using proof irrelevance for Prop
|
||||
(assume Hnp2 : ¬p, absurd_elim (inl Hp1 = inr Hnp2) Hp1 Hnp2)
|
||||
d2)
|
||||
(assume Hnp1 : ¬p, decidable_rec
|
||||
(assume Hp2 : p, absurd_elim (inr Hnp1 = inl Hp2) Hp2 Hnp1)
|
||||
(assume Hnp2 : ¬p, congr2 inr (refl Hnp1)) -- using proof irrelevance for Prop
|
||||
(assume Hnp2 : ¬p, congr_arg inr (refl Hnp1)) -- using proof irrelevance for Prop
|
||||
d2)
|
||||
d1
|
||||
|
||||
|
|
|
@ -5,15 +5,19 @@
|
|||
import logic.connectives.basic
|
||||
|
||||
inductive inhabited (A : Type) : Type :=
|
||||
| inhabited_intro : A → inhabited A
|
||||
| inhabited_mk : A → inhabited A
|
||||
|
||||
definition inhabited_elim {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
||||
namespace inhabited
|
||||
|
||||
definition inhabited_destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
||||
inhabited_rec H2 H1
|
||||
|
||||
definition inhabited_Prop [instance] : inhabited Prop :=
|
||||
inhabited_intro true
|
||||
inhabited_mk true
|
||||
|
||||
definition inhabited_fun [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) :=
|
||||
inhabited_elim H (take b, inhabited_intro (λa, b))
|
||||
inhabited_destruct H (take b, inhabited_mk (λa, b))
|
||||
|
||||
definition default (A : Type) {H : inhabited A} : A := inhabited_elim H (take a, a)
|
||||
definition default (A : Type) {H : inhabited A} : A := inhabited_destruct H (take a, a)
|
||||
|
||||
end inhabited
|
||||
|
|
|
@ -4,6 +4,10 @@
|
|||
|
||||
import logic.connectives.basic .inhabited
|
||||
|
||||
using inhabited
|
||||
|
||||
namespace nonempty
|
||||
|
||||
inductive nonempty (A : Type) : Prop :=
|
||||
| nonempty_intro : A → nonempty A
|
||||
|
||||
|
@ -12,3 +16,5 @@ nonempty_rec H2 H1
|
|||
|
||||
theorem inhabited_imp_nonempty [instance] {A : Type} (H : inhabited A) : nonempty A :=
|
||||
nonempty_intro (default A)
|
||||
|
||||
end nonempty
|
||||
|
|
|
@ -1,8 +1,6 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Leonardo de Moura, Jeremy Avigad
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import general_notation .prop
|
||||
|
||||
|
@ -57,6 +55,9 @@ assume Hna : ¬a, absurd (assume Ha : a, absurd_elim b Ha Hna) H
|
|||
theorem not_implies_right {a b : Prop} (H : ¬(a → b)) : ¬b :=
|
||||
assume Hb : b, absurd (assume Ha : a, Hb) H
|
||||
|
||||
theorem contrapos {a b : Prop} (Hab : a → b) : (¬b → ¬a) :=
|
||||
assume Hnb Ha, Hnb (Hab Ha)
|
||||
|
||||
|
||||
-- and
|
||||
-- ---
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
import .eq .quantifiers
|
||||
|
||||
using eq_proofs
|
||||
using eq_ops
|
||||
|
||||
definition cast {A B : Type} (H : A = B) (a : A) : B :=
|
||||
eq_rec a H
|
||||
|
@ -91,13 +91,13 @@ heq_to_eq (calc cast Hbc (cast Hab a) == cast Hab a : cast_heq Hbc (cas
|
|||
... == a : cast_heq Hab a
|
||||
... == cast (Hab ⬝ Hbc) a : hsymm (cast_heq (Hab ⬝ Hbc) a))
|
||||
|
||||
theorem dcongr2 {A : Type} {B : A → Type} (f : Πx, B x) {a b : A} (H : a = b) : f a == f b :=
|
||||
theorem dcongr_arg {A : Type} {B : A → Type} (f : Πx, B x) {a b : A} (H : a = b) : f a == f b :=
|
||||
have e1 : ∀ (H : B a = B a), cast H (f a) = f a, from
|
||||
assume H, cast_eq H (f a),
|
||||
have e2 : ∀ (H : B a = B b), cast H (f a) = f b, from
|
||||
subst H e1,
|
||||
have e3 : cast (congr2 B H) (f a) = f b, from
|
||||
e2 (congr2 B H),
|
||||
have e3 : cast (congr_arg B H) (f a) = f b, from
|
||||
e2 (congr_arg B H),
|
||||
cast_eq_to_heq e3
|
||||
|
||||
theorem pi_eq {A : Type} {B B' : A → Type} (H : B = B') : (Π x, B x) = (Π x, B' x) :=
|
||||
|
@ -106,20 +106,20 @@ subst H (refl (Π x, B x))
|
|||
theorem cast_app' {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) :
|
||||
cast (pi_eq H) f a == f a :=
|
||||
have H1 : ∀ (H : (Π x, B x) = (Π x, B x)), cast H f a == f a, from
|
||||
assume H, eq_to_heq (congr1 (cast_eq H f) a),
|
||||
assume H, eq_to_heq (congr_fun (cast_eq H f) a),
|
||||
have H2 : ∀ (H : (Π x, B x) = (Π x, B' x)), cast H f a == f a, from
|
||||
subst H H1,
|
||||
H2 (pi_eq H)
|
||||
|
||||
theorem cast_pull {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) :
|
||||
cast (pi_eq H) f a = cast (congr1 H a) (f a) :=
|
||||
cast (pi_eq H) f a = cast (congr_fun H a) (f a) :=
|
||||
heq_to_eq (calc cast (pi_eq H) f a == f a : cast_app' H f a
|
||||
... == cast (congr1 H a) (f a) : hsymm (cast_heq (congr1 H a) (f a)))
|
||||
... == cast (congr_fun H a) (f a) : hsymm (cast_heq (congr_fun H a) (f a)))
|
||||
|
||||
theorem hcongr1' {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A)
|
||||
theorem hcongr_fun' {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A)
|
||||
(H1 : f == f') (H2 : B = B')
|
||||
: f a == f' a :=
|
||||
heq_elim H1 (λ (Ht : (Π x, B x) = (Π x, B' x)) (Hw : cast Ht f = f'),
|
||||
calc f a == cast (pi_eq H2) f a : hsymm (cast_app' H2 f a)
|
||||
... = cast Ht f a : refl (cast Ht f a)
|
||||
... = f' a : congr1 Hw a)
|
||||
... = f' a : congr_fun Hw a)
|
||||
|
|
|
@ -54,27 +54,27 @@ theorem eq_rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) (
|
|||
from eq_rec_on H2 (take (H2 : b = b), eq_rec_on_id H2 _))
|
||||
H2
|
||||
|
||||
namespace eq_proofs
|
||||
namespace eq_ops
|
||||
postfix `⁻¹`:100 := symm
|
||||
infixr `⬝`:75 := trans
|
||||
infixr `▸`:75 := subst
|
||||
end eq_proofs
|
||||
using eq_proofs
|
||||
end eq_ops
|
||||
using eq_ops
|
||||
|
||||
theorem congr1 {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
|
||||
theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
|
||||
H ▸ refl (f a)
|
||||
|
||||
theorem congr2 {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b :=
|
||||
theorem congr_arg {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b :=
|
||||
H ▸ refl (f a)
|
||||
|
||||
theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b :=
|
||||
H1 ▸ H2 ▸ refl (f a)
|
||||
|
||||
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x :=
|
||||
take x, congr1 H x
|
||||
take x, congr_fun H x
|
||||
|
||||
theorem not_congr {a b : Prop} (H : a = b) : (¬a) = (¬b) :=
|
||||
congr2 not H
|
||||
congr_arg not H
|
||||
|
||||
theorem eqmp {a b : Prop} (H1 : a = b) (H2 : a) : b :=
|
||||
H1 ▸ H2
|
||||
|
|
|
@ -6,11 +6,12 @@ import ..instances
|
|||
|
||||
using relation
|
||||
|
||||
using relation.general_operations
|
||||
using relation.iff_ops
|
||||
using eq_ops
|
||||
|
||||
section
|
||||
|
||||
using relation.operations
|
||||
|
||||
theorem test1 (a b : Prop) (H : a ↔ b) (H1 : a) : b := mp H H1
|
||||
|
||||
end
|
||||
|
@ -18,10 +19,8 @@ end
|
|||
|
||||
section
|
||||
|
||||
using gensubst
|
||||
|
||||
theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
||||
subst H1 H2
|
||||
subst iff H1 H2
|
||||
|
||||
theorem test3 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
||||
H1 ▸ H2
|
||||
|
@ -35,12 +34,16 @@ congr.infer iff iff (λa, (a ∨ c → ¬(d → a))) H1
|
|||
|
||||
section
|
||||
|
||||
using relation.symbols
|
||||
|
||||
theorem test5 (T : Type) (a b c d : T) (H1 : a = b) (H2 : c = b) (H3 : c = d) : a = d :=
|
||||
H1 ⬝ H2⁻¹ ⬝ H3
|
||||
|
||||
theorem test6 (a b c d : Prop) (H1 : a ↔ b) (H2 : c ↔ b) (H3 : c ↔ d) : a ↔ d :=
|
||||
H1 ⬝ (H2⁻¹ ⬝ H3)
|
||||
|
||||
theorem test7 (T : Type) (a b c d : T) (H1 : a = b) (H2 : c = b) (H3 : c = d) : a = d :=
|
||||
trans H1 (trans (symm H2) H3)
|
||||
|
||||
theorem test8 (a b c d : Prop) (H1 : a ↔ b) (H2 : c ↔ b) (H3 : c ↔ d) : a ↔ d :=
|
||||
trans iff H1 (trans iff (symm iff H2) H3)
|
||||
|
||||
end
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import logic.classes.decidable tools.tactic
|
||||
using decidable tactic eq_proofs
|
||||
using decidable tactic eq_ops
|
||||
|
||||
definition ite (c : Prop) {H : decidable c} {A : Type} (t e : A) : A :=
|
||||
rec_on H (assume Hc, t) (assume Hnc, e)
|
||||
|
|
|
@ -4,44 +4,46 @@
|
|||
|
||||
import logic.connectives.basic logic.connectives.eq struc.relation
|
||||
|
||||
namespace relation
|
||||
|
||||
using relation
|
||||
|
||||
-- Congruences for logic
|
||||
-- ---------------------
|
||||
|
||||
theorem congr_not : congr.class iff iff not :=
|
||||
congr.mk
|
||||
theorem congr_not : congr iff iff not :=
|
||||
congr_mk
|
||||
(take a b,
|
||||
assume H : a ↔ b, iff_intro
|
||||
(assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2))
|
||||
(assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2)))
|
||||
|
||||
theorem congr_and : congr.class2 iff iff iff and :=
|
||||
congr.mk2
|
||||
theorem congr_and : congr2 iff iff iff and :=
|
||||
congr2_mk
|
||||
(take a1 b1 a2 b2,
|
||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||
iff_intro
|
||||
(assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2))
|
||||
(assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2)))
|
||||
|
||||
theorem congr_or : congr.class2 iff iff iff or :=
|
||||
congr.mk2
|
||||
theorem congr_or : congr2 iff iff iff or :=
|
||||
congr2_mk
|
||||
(take a1 b1 a2 b2,
|
||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||
iff_intro
|
||||
(assume H3 : a1 ∨ a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2))
|
||||
(assume H3 : b1 ∨ b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2)))
|
||||
|
||||
theorem congr_imp : congr.class2 iff iff iff imp :=
|
||||
congr.mk2
|
||||
theorem congr_imp : congr2 iff iff iff imp :=
|
||||
congr2_mk
|
||||
(take a1 b1 a2 b2,
|
||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||
iff_intro
|
||||
(assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1)))
|
||||
(assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1))))
|
||||
|
||||
theorem congr_iff : congr.class2 iff iff iff iff :=
|
||||
congr.mk2
|
||||
theorem congr_iff : congr2 iff iff iff iff :=
|
||||
congr2_mk
|
||||
(take a1 b1 a2 b2,
|
||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||
iff_intro
|
||||
|
@ -59,62 +61,87 @@ theorem congr_iff_compose [instance] := congr.compose21 congr_iff
|
|||
-- Generalized substitution
|
||||
-- ------------------------
|
||||
|
||||
namespace gensubst
|
||||
|
||||
-- TODO: note that the target has to be "iff". Otherwise, there is not enough
|
||||
-- information to infer an mp-like relation.
|
||||
|
||||
theorem subst {T : Type} {R : T → T → Prop} {P : T → Prop} {C : congr.class R iff P}
|
||||
namespace general_operations
|
||||
|
||||
theorem subst {T : Type} (R : T → T → Prop) ⦃P : T → Prop⦄ {C : congr R iff P}
|
||||
{a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (congr.app C H) H1
|
||||
|
||||
infixr `▸`:75 := subst
|
||||
|
||||
end gensubst
|
||||
|
||||
end general_operations
|
||||
|
||||
-- = is an equivalence relation
|
||||
-- ----------------------------
|
||||
|
||||
theorem is_reflexive_eq [instance] (T : Type) : relation.is_reflexive.class (@eq T) :=
|
||||
relation.is_reflexive.mk (@refl T)
|
||||
theorem is_reflexive_eq [instance] (T : Type) : relation.is_reflexive (@eq T) :=
|
||||
relation.is_reflexive_mk (@refl T)
|
||||
|
||||
theorem is_symmetric_eq [instance] (T : Type) : relation.is_symmetric.class (@eq T) :=
|
||||
relation.is_symmetric.mk (@symm T)
|
||||
theorem is_symmetric_eq [instance] (T : Type) : relation.is_symmetric (@eq T) :=
|
||||
relation.is_symmetric_mk (@symm T)
|
||||
|
||||
theorem is_transitive_eq [instance] (T : Type) : relation.is_transitive.class (@eq T) :=
|
||||
relation.is_transitive.mk (@trans T)
|
||||
theorem is_transitive_eq [instance] (T : Type) : relation.is_transitive (@eq T) :=
|
||||
relation.is_transitive_mk (@trans T)
|
||||
|
||||
-- TODO: this is only temporary, needed to inform Lean that is_equivalence is a class
|
||||
theorem is_equivalence_eq [instance] (T : Type) : relation.is_equivalence (@eq T) :=
|
||||
relation.is_equivalence_mk _ _ _
|
||||
|
||||
|
||||
-- iff is an equivalence relation
|
||||
-- ------------------------------
|
||||
|
||||
theorem is_reflexive_iff [instance] : relation.is_reflexive.class iff :=
|
||||
relation.is_reflexive.mk (@iff_refl)
|
||||
theorem is_reflexive_iff [instance] : relation.is_reflexive iff :=
|
||||
relation.is_reflexive_mk (@iff_refl)
|
||||
|
||||
theorem is_symmetric_iff [instance] : relation.is_symmetric.class iff :=
|
||||
relation.is_symmetric.mk (@iff_symm)
|
||||
theorem is_symmetric_iff [instance] : relation.is_symmetric iff :=
|
||||
relation.is_symmetric_mk (@iff_symm)
|
||||
|
||||
theorem is_transitive_iff [instance] : relation.is_transitive.class iff :=
|
||||
relation.is_transitive.mk (@iff_trans)
|
||||
theorem is_transitive_iff [instance] : relation.is_transitive iff :=
|
||||
relation.is_transitive_mk (@iff_trans)
|
||||
|
||||
|
||||
-- Mp-like for iff
|
||||
-- ---------------
|
||||
|
||||
theorem mp_like_iff [instance] (a b : Prop) (H : a ↔ b) : relation.mp_like.class H :=
|
||||
relation.mp_like.mk (iff_elim_left H)
|
||||
theorem mp_like_iff [instance] (a b : Prop) (H : a ↔ b) : relation.mp_like H :=
|
||||
relation.mp_like_mk (iff_elim_left H)
|
||||
|
||||
-- Substition for iff
|
||||
-- ------------------
|
||||
|
||||
theorem subst_iff {P : Prop → Prop} {C : congr iff iff P} {a b : Prop} (H : a ↔ b) (H1 : P a) :
|
||||
P b :=
|
||||
@general_operations.subst Prop iff P C a b H H1
|
||||
|
||||
-- Support for calc
|
||||
-- ----------------
|
||||
|
||||
calc_refl iff_refl
|
||||
calc_subst subst_iff
|
||||
calc_trans iff_trans
|
||||
|
||||
namespace iff_ops
|
||||
postfix `⁻¹`:100 := iff_symm
|
||||
infixr `⬝`:75 := iff_trans
|
||||
infixr `▸`:75 := subst_iff
|
||||
end iff_ops
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- Boolean calculations
|
||||
-- --------------------
|
||||
|
||||
-- TODO: move these to new file
|
||||
-- TODO: declare trans
|
||||
-- TODO: move these somewhere
|
||||
|
||||
theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b :=
|
||||
calc
|
||||
(a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or_assoc _ _ _
|
||||
... ↔ a ∨ (c ∨ b) : congr.infer iff iff _ (or_comm b c)
|
||||
... ↔ a ∨ (c ∨ b) : {or_comm b c}
|
||||
... ↔ (a ∨ c) ∨ b : iff_symm (or_assoc _ _ _)
|
||||
|
||||
-- TODO: add or_left_comm, and_right_comm, and_left_comm
|
||||
|
||||
end relation
|
||||
|
|
|
@ -4,6 +4,8 @@
|
|||
|
||||
import .basic .eq ..classes.nonempty
|
||||
|
||||
using inhabited nonempty
|
||||
|
||||
inductive Exists {A : Type} (P : A → Prop) : Prop :=
|
||||
| exists_intro : ∀ (a : A), P a → Exists P
|
||||
|
||||
|
@ -52,12 +54,12 @@ theorem forall_true_iff_true (A : Type) : (∀x : A, true) ↔ true :=
|
|||
iff_intro (assume H, trivial) (assume H, take x, trivial)
|
||||
|
||||
theorem forall_p_iff_p (A : Type) {H : inhabited A} (p : Prop) : (∀x : A, p) ↔ p :=
|
||||
iff_intro (assume Hl, inhabited_elim H (take x, Hl x)) (assume Hr, take x, Hr)
|
||||
iff_intro (assume Hl, inhabited_destruct H (take x, Hl x)) (assume Hr, take x, Hr)
|
||||
|
||||
theorem exists_p_iff_p (A : Type) {H : inhabited A} (p : Prop) : (∃x : A, p) ↔ p :=
|
||||
iff_intro
|
||||
(assume Hl, obtain a Hp, from Hl, Hp)
|
||||
(assume Hr, inhabited_elim H (take a, exists_intro a Hr))
|
||||
(assume Hr, inhabited_destruct H (take a, exists_intro a Hr))
|
||||
|
||||
theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) : (∀x, φ x ∧ ψ x) ↔ (∀x, φ x) ∧ (∀x, ψ x) :=
|
||||
iff_intro
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import logic.connectives.eq
|
||||
using eq_proofs
|
||||
using eq_ops
|
||||
|
||||
namespace binary
|
||||
section
|
||||
|
|
|
@ -1,31 +0,0 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import logic.connectives.prop
|
||||
|
||||
namespace equivalence
|
||||
section
|
||||
parameter {A : Type}
|
||||
parameter p : A → A → Prop
|
||||
infix `∼`:50 := p
|
||||
definition reflexive := ∀a, a ∼ a
|
||||
definition symmetric := ∀a b, a ∼ b → b ∼ a
|
||||
definition transitive := ∀a b c, a ∼ b → b ∼ c → a ∼ c
|
||||
end
|
||||
|
||||
inductive equivalence {A : Type} (p : A → A → Prop) : Prop :=
|
||||
| equivalence_intro : reflexive p → symmetric p → transitive p → equivalence p
|
||||
|
||||
theorem equivalence_reflexive [instance] {A : Type} {p : A → A → Prop} (H : equivalence p) : reflexive p :=
|
||||
equivalence_rec (λ r s t, r) H
|
||||
|
||||
theorem equivalence_symmetric [instance] {A : Type} {p : A → A → Prop} (H : equivalence p) : symmetric p :=
|
||||
equivalence_rec (λ r s t, s) H
|
||||
|
||||
theorem equivalence_transitive [instance] {A : Type} {p : A → A → Prop} (H : equivalence p) : transitive p :=
|
||||
equivalence_rec (λ r s t, t) H
|
||||
|
||||
end equivalence
|
|
@ -4,69 +4,72 @@
|
|||
|
||||
import logic.connectives.prop
|
||||
|
||||
|
||||
-- General properties of relations
|
||||
-- -------------------------------
|
||||
|
||||
namespace relation
|
||||
|
||||
abbreviation reflexive {T : Type} (R : T → T → Type) : Type := ∀x, R x x
|
||||
abbreviation symmetric {T : Type} (R : T → T → Type) : Type := ∀x y, R x y → R y x
|
||||
abbreviation transitive {T : Type} (R : T → T → Type) : Type := ∀x y z, R x y → R y z → R x z
|
||||
abbreviation symmetric {T : Type} (R : T → T → Type) : Type := ∀⦃x y⦄, R x y → R y x
|
||||
abbreviation transitive {T : Type} (R : T → T → Type) : Type := ∀⦃x y z⦄, R x y → R y z → R x z
|
||||
|
||||
|
||||
inductive is_reflexive {T : Type} (R : T → T → Type) : Prop :=
|
||||
| is_reflexive_mk : reflexive R → is_reflexive R
|
||||
|
||||
namespace is_reflexive
|
||||
|
||||
inductive class {T : Type} (R : T → T → Type) : Prop :=
|
||||
| mk : reflexive R → class R
|
||||
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : is_reflexive R) : reflexive R :=
|
||||
is_reflexive_rec (λu, u) C
|
||||
|
||||
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) : reflexive R :=
|
||||
class_rec (λu, u) C
|
||||
|
||||
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} : reflexive R :=
|
||||
class_rec (λu, u) C
|
||||
abbreviation infer ⦃T : Type⦄ (R : T → T → Type) {C : is_reflexive R} : reflexive R :=
|
||||
is_reflexive_rec (λu, u) C
|
||||
|
||||
end is_reflexive
|
||||
|
||||
|
||||
inductive is_symmetric {T : Type} (R : T → T → Type) : Prop :=
|
||||
| is_symmetric_mk : symmetric R → is_symmetric R
|
||||
|
||||
namespace is_symmetric
|
||||
|
||||
inductive class {T : Type} (R : T → T → Type) : Prop :=
|
||||
| mk : symmetric R → class R
|
||||
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : is_symmetric R) : symmetric R :=
|
||||
is_symmetric_rec (λu, u) C
|
||||
|
||||
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y : T⦄ (H : R x y) : R y x :=
|
||||
class_rec (λu, u) C x y H
|
||||
|
||||
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y : T⦄ (H : R x y) : R y x :=
|
||||
class_rec (λu, u) C x y H
|
||||
abbreviation infer ⦃T : Type⦄ (R : T → T → Type) {C : is_symmetric R} : symmetric R :=
|
||||
is_symmetric_rec (λu, u) C
|
||||
|
||||
end is_symmetric
|
||||
|
||||
|
||||
inductive is_transitive {T : Type} (R : T → T → Type) : Prop :=
|
||||
| is_transitive_mk : transitive R → is_transitive R
|
||||
|
||||
namespace is_transitive
|
||||
|
||||
inductive class {T : Type} (R : T → T → Type) : Prop :=
|
||||
| mk : transitive R → class R
|
||||
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : is_transitive R) : transitive R :=
|
||||
is_transitive_rec (λu, u) C
|
||||
|
||||
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y z : T⦄ (H1 : R x y)
|
||||
(H2 : R y z) : R x z :=
|
||||
class_rec (λu, u) C x y z H1 H2
|
||||
|
||||
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y z : T⦄ (H1 : R x y)
|
||||
(H2 : R y z) : R x z :=
|
||||
class_rec (λu, u) C x y z H1 H2
|
||||
abbreviation infer ⦃T : Type⦄ (R : T → T → Type) {C : is_transitive R} : transitive R :=
|
||||
is_transitive_rec (λu, u) C
|
||||
|
||||
end is_transitive
|
||||
|
||||
|
||||
inductive is_equivalence {T : Type} (R : T → T → Type) : Prop :=
|
||||
| is_equivalence_mk : is_reflexive R → is_symmetric R → is_transitive R → is_equivalence R
|
||||
|
||||
namespace is_equivalence
|
||||
|
||||
inductive class {T : Type} (R : T → T → Type) : Prop :=
|
||||
| mk : is_reflexive.class R → is_symmetric.class R → is_transitive.class R → class R
|
||||
theorem is_reflexive {T : Type} (R : T → T → Type) {C : is_equivalence R} : is_reflexive R :=
|
||||
is_equivalence_rec (λx y z, x) C
|
||||
|
||||
theorem is_reflexive {T : Type} {R : T → T → Type} {C : class R} : is_reflexive.class R :=
|
||||
class_rec (λx y z, x) C
|
||||
theorem is_symmetric {T : Type} {R : T → T → Type} {C : is_equivalence R} : is_symmetric R :=
|
||||
is_equivalence_rec (λx y z, y) C
|
||||
|
||||
theorem is_symmetric {T : Type} {R : T → T → Type} {C : class R} : is_symmetric.class R :=
|
||||
class_rec (λx y z, y) C
|
||||
|
||||
theorem is_transitive {T : Type} {R : T → T → Type} {C : class R} : is_transitive.class R :=
|
||||
class_rec (λx y z, z) C
|
||||
theorem is_transitive {T : Type} {R : T → T → Type} {C : is_equivalence R} : is_transitive R :=
|
||||
is_equivalence_rec (λx y z, z) C
|
||||
|
||||
end is_equivalence
|
||||
|
||||
|
@ -74,112 +77,109 @@ instance is_equivalence.is_reflexive
|
|||
instance is_equivalence.is_symmetric
|
||||
instance is_equivalence.is_transitive
|
||||
|
||||
|
||||
-- partial equivalence relation
|
||||
inductive is_PER {T : Type} (R : T → T → Type) : Prop :=
|
||||
| is_PER_mk : is_symmetric R → is_transitive R → is_PER R
|
||||
|
||||
namespace is_PER
|
||||
|
||||
inductive class {T : Type} (R : T → T → Type) : Prop :=
|
||||
| mk : is_symmetric.class R → is_transitive.class R → class R
|
||||
theorem is_symmetric {T : Type} {R : T → T → Type} {C : is_PER R} : is_symmetric R :=
|
||||
is_PER_rec (λx y, x) C
|
||||
|
||||
theorem is_symmetric {T : Type} {R : T → T → Type} {C : class R} : is_symmetric.class R :=
|
||||
class_rec (λx y, x) C
|
||||
|
||||
theorem is_transitive {T : Type} {R : T → T → Type} {C : class R} : is_transitive.class R :=
|
||||
class_rec (λx y, y) C
|
||||
theorem is_transitive {T : Type} {R : T → T → Type} {C : is_PER R} : is_transitive R :=
|
||||
is_PER_rec (λx y, y) C
|
||||
|
||||
end is_PER
|
||||
|
||||
-- instance is_PER.is_symmetric
|
||||
instance is_PER.is_symmetric
|
||||
instance is_PER.is_transitive
|
||||
|
||||
|
||||
-- Congruence for unary and binary functions
|
||||
-- -----------------------------------------
|
||||
|
||||
namespace congr
|
||||
|
||||
inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||
inductive congr {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||
(f : T1 → T2) : Prop :=
|
||||
| mk : (∀x y, R1 x y → R2 (f x) (f y)) → class R1 R2 f
|
||||
|
||||
abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
|
||||
{f : T1 → T2} (C : class R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
||||
class_rec (λu, u) C x y
|
||||
|
||||
theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||
(f : T1 → T2) {C : class R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
||||
class_rec (λu, u) C x y
|
||||
| congr_mk : (∀x y, R1 x y → R2 (f x) (f y)) → congr R1 R2 f
|
||||
|
||||
-- for binary functions
|
||||
inductive class2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||
inductive congr2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||
{T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop :=
|
||||
| mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) →
|
||||
class2 R1 R2 R3 f
|
||||
| congr2_mk : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) →
|
||||
congr2 R1 R2 R3 f
|
||||
|
||||
abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
|
||||
namespace congr
|
||||
|
||||
abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
|
||||
{f : T1 → T2} (C : congr R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
||||
congr_rec (λu, u) C x y
|
||||
|
||||
theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||
(f : T1 → T2) {C : congr R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
||||
congr_rec (λu, u) C x y
|
||||
|
||||
abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
|
||||
{T3 : Type} {R3 : T3 → T3 → Prop}
|
||||
{f : T1 → T2 → T3} (C : class2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄
|
||||
: R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
|
||||
class2_rec (λu, u) C x1 y1 x2 y2
|
||||
{f : T1 → T2 → T3} (C : congr2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ :
|
||||
R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
|
||||
congr2_rec (λu, u) C x1 y1 x2 y2
|
||||
|
||||
-- ### general tools to build instances
|
||||
|
||||
theorem compose
|
||||
theorem compose
|
||||
{T2 : Type} {R2 : T2 → T2 → Prop}
|
||||
{T3 : Type} {R3 : T3 → T3 → Prop}
|
||||
{g : T2 → T3} (C2 : congr.class R2 R3 g)
|
||||
{{T1 : Type}} {R1 : T1 → T1 → Prop}
|
||||
{f : T1 → T2} (C1 : congr.class R1 R2 f) :
|
||||
congr.class R1 R3 (λx, g (f x)) :=
|
||||
mk (λx1 x2 H, app C2 (app C1 H))
|
||||
{g : T2 → T3} (C2 : congr R2 R3 g)
|
||||
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
|
||||
{f : T1 → T2} (C1 : congr R1 R2 f) :
|
||||
congr R1 R3 (λx, g (f x)) :=
|
||||
congr_mk (λx1 x2 H, app C2 (app C1 H))
|
||||
|
||||
theorem compose21
|
||||
theorem compose21
|
||||
{T2 : Type} {R2 : T2 → T2 → Prop}
|
||||
{T3 : Type} {R3 : T3 → T3 → Prop}
|
||||
{T4 : Type} {R4 : T4 → T4 → Prop}
|
||||
{g : T2 → T3 → T4} (C3 : congr.class2 R2 R3 R4 g)
|
||||
{g : T2 → T3 → T4} (C3 : congr2 R2 R3 R4 g)
|
||||
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
|
||||
{f1 : T1 → T2} (C1 : congr.class R1 R2 f1)
|
||||
{f2 : T1 → T3} (C2 : congr.class R1 R3 f2) :
|
||||
congr.class R1 R4 (λx, g (f1 x) (f2 x)) :=
|
||||
mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
|
||||
{f1 : T1 → T2} (C1 : congr R1 R2 f1)
|
||||
{f2 : T1 → T3} (C2 : congr R1 R3 f2) :
|
||||
congr R1 R4 (λx, g (f1 x) (f2 x)) :=
|
||||
congr_mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
|
||||
|
||||
theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : relation.reflexive R2)
|
||||
theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : relation.reflexive R2)
|
||||
⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
|
||||
class R1 R2 (λu : T1, c) :=
|
||||
mk (λx y H1, H c)
|
||||
congr R1 R2 (λu : T1, c) :=
|
||||
congr_mk (λx y H1, H c)
|
||||
|
||||
end congr
|
||||
|
||||
end relation
|
||||
|
||||
|
||||
-- TODO: notice these can't be in the congr namespace, if we want it visible without
|
||||
-- Notice these can't be in the congr namespace, if we want it visible without
|
||||
-- using congr.
|
||||
|
||||
theorem congr_const [instance] {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||
{C : relation.is_reflexive.class R2} ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
|
||||
relation.congr.class R1 R2 (λu : T1, c) :=
|
||||
relation.congr.const R2 (relation.is_reflexive.app C) R1 c
|
||||
{C : is_reflexive R2} ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
|
||||
congr R1 R2 (λu : T1, c) :=
|
||||
congr.const R2 (is_reflexive.app C) R1 c
|
||||
|
||||
theorem congr_trivial [instance] {T : Type} (R : T → T → Prop) :
|
||||
relation.congr.class R R (λu, u) :=
|
||||
relation.congr.mk (λx y H, H)
|
||||
congr R R (λu, u) :=
|
||||
congr_mk (λx y H, H)
|
||||
|
||||
|
||||
-- Relations that can be coerced to functions / implications
|
||||
-- ---------------------------------------------------------
|
||||
|
||||
namespace relation
|
||||
inductive mp_like {R : Type → Type → Prop} {a b : Type} (H : R a b) : Prop :=
|
||||
| mp_like_mk {} : (a → b) → @mp_like R a b H
|
||||
|
||||
namespace mp_like
|
||||
|
||||
inductive class {R : Type → Type → Prop} {a b : Type} (H : R a b) : Prop :=
|
||||
| mk {} : (a → b) → @class R a b H
|
||||
definition app {R : Type → Type → Prop} {a : Type} {b : Type} {H : R a b}
|
||||
(C : mp_like H) : a → b := mp_like_rec (λx, x) C
|
||||
|
||||
definition app {R : Type → Type → Prop} {a : Type} {b : Type} {H : R a b}
|
||||
(C : class H) : a → b := class_rec (λx, x) C
|
||||
|
||||
definition infer ⦃R : Type → Type → Prop⦄ {a : Type} {b : Type} (H : R a b)
|
||||
{C : class H} : a → b := class_rec (λx, x) C
|
||||
definition infer ⦃R : Type → Type → Prop⦄ {a : Type} {b : Type} (H : R a b)
|
||||
{C : mp_like H} : a → b := mp_like_rec (λx, x) C
|
||||
|
||||
end mp_like
|
||||
|
||||
|
@ -187,20 +187,21 @@ end mp_like
|
|||
-- Notation for operations on general symbols
|
||||
-- ------------------------------------------
|
||||
|
||||
namespace operations
|
||||
namespace general_operations
|
||||
|
||||
-- e.g. if R is an instance of the class, then "refl R" is reflexivity for the class
|
||||
definition refl := is_reflexive.infer
|
||||
definition symm := is_symmetric.infer
|
||||
definition trans := is_transitive.infer
|
||||
definition mp := mp_like.infer
|
||||
|
||||
end operations
|
||||
end general_operations
|
||||
|
||||
namespace symbols
|
||||
-- namespace
|
||||
--
|
||||
-- postfix `⁻¹`:100 := operations.symm
|
||||
-- infixr `⬝`:75 := operations.trans
|
||||
|
||||
postfix `⁻¹`:100 := operations.symm
|
||||
infixr `⬝`:75 := operations.trans
|
||||
|
||||
end symbols
|
||||
-- end symbols
|
||||
|
||||
end relation
|
||||
|
|
9
library/standard/tools/fake_simplifier.lean
Normal file
9
library/standard/tools/fake_simplifier.lean
Normal file
|
@ -0,0 +1,9 @@
|
|||
import .tactic
|
||||
using tactic
|
||||
|
||||
namespace fake_simplifier
|
||||
|
||||
-- until we have the simplifier...
|
||||
definition simp : tactic := apply @sorry
|
||||
|
||||
end fake_simplifier
|
|
@ -54,4 +54,5 @@ notation `?` t:max := try t
|
|||
definition repeat1 (t : tactic) : tactic := t ; !t
|
||||
definition focus (t : tactic) : tactic := focus_at t 0
|
||||
definition determ (t : tactic) : tactic := at_most t 1
|
||||
|
||||
end tactic
|
||||
|
|
Loading…
Reference in a new issue