refactor(data/sigma): move notation from sigma.thms to sigma.decl
This commit is contained in:
parent
7bfbe039d9
commit
25f5c56bb2
2 changed files with 18 additions and 17 deletions
|
@ -7,3 +7,15 @@ structure sigma {A : Type} (B : A → Type) :=
|
||||||
dpair :: (dpr1 : A) (dpr2 : B dpr1)
|
dpair :: (dpr1 : A) (dpr2 : B dpr1)
|
||||||
|
|
||||||
notation `Σ` binders `,` r:(scoped P, sigma P) := r
|
notation `Σ` binders `,` r:(scoped P, sigma P) := r
|
||||||
|
|
||||||
|
namespace sigma
|
||||||
|
|
||||||
|
notation `dpr₁` := dpr1
|
||||||
|
notation `dpr₂` := dpr2
|
||||||
|
|
||||||
|
namespace ops
|
||||||
|
postfix `.1`:10000 := dpr1
|
||||||
|
postfix `.2`:10000 := dpr2
|
||||||
|
notation `⟨` t:(foldr `,`:0 (e r, sigma.dpair e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \>
|
||||||
|
end ops
|
||||||
|
end sigma
|
||||||
|
|
|
@ -2,24 +2,13 @@
|
||||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
-- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
-- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||||||
import data.sigma.decl
|
import data.sigma.decl
|
||||||
open inhabited eq.ops
|
open inhabited eq.ops sigma.ops
|
||||||
|
|
||||||
namespace sigma
|
namespace sigma
|
||||||
|
|
||||||
notation `dpr₁` := dpr1
|
|
||||||
notation `dpr₂` := dpr2
|
|
||||||
|
|
||||||
namespace ops
|
|
||||||
postfix `.1`:10000 := dpr1
|
|
||||||
postfix `.2`:10000 := dpr2
|
|
||||||
notation `(` t:(foldr `;`:0 (e r, sigma.dpair e r)) `)` := t
|
|
||||||
end ops
|
|
||||||
|
|
||||||
open ops
|
|
||||||
universe variables u v
|
universe variables u v
|
||||||
variables {A A' : Type.{u}} {B : A → Type.{v}} {B' : A' → Type.{v}}
|
variables {A A' : Type.{u}} {B : A → Type.{v}} {B' : A' → Type.{v}}
|
||||||
|
|
||||||
definition unpack {C : (Σa, B a) → Type} {u : Σa, B a} (H : C ( u.1 ; u.2)) : C u :=
|
definition unpack {C : (Σa, B a) → Type} {u : Σa, B a} (H : C ⟨u.1 , u.2⟩) : C u :=
|
||||||
destruct u (λx y H, H) H
|
destruct u (λx y H, H) H
|
||||||
|
|
||||||
theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) :
|
theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) :
|
||||||
|
@ -48,8 +37,8 @@ namespace sigma
|
||||||
|
|
||||||
variables {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
variables {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
||||||
|
|
||||||
definition dtrip (a : A) (b : B a) (c : C a b) := (a; b; c)
|
definition dtrip (a : A) (b : B a) (c : C a b) := ⟨a, b, c⟩
|
||||||
definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := (a; b; c; d)
|
definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := ⟨a, b, c, d⟩
|
||||||
|
|
||||||
definition dpr1' (x : Σ a, B a) := x.1
|
definition dpr1' (x : Σ a, B a) := x.1
|
||||||
definition dpr2' (x : Σ a b, C a b) := x.2.1
|
definition dpr2' (x : Σ a b, C a b) := x.2.1
|
||||||
|
@ -59,12 +48,12 @@ namespace sigma
|
||||||
|
|
||||||
theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
||||||
(H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : cast (dcongr_arg2 C H₁ H₂) c₁ = c₂) :
|
(H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : cast (dcongr_arg2 C H₁ H₂) c₁ = c₂) :
|
||||||
(a₁; b₁; c₁) = (a₂; b₂; c₂) :=
|
⟨a₁, b₁, c₁⟩ = ⟨a₂, b₂, c₂⟩ :=
|
||||||
dcongr_arg3 dtrip H₁ H₂ H₃
|
dcongr_arg3 dtrip H₁ H₂ H₃
|
||||||
|
|
||||||
theorem ndtrip_eq {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B}
|
theorem ndtrip_eq {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B}
|
||||||
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂)
|
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂)
|
||||||
(H₃ : cast (congr_arg2 C H₁ H₂) c₁ = c₂) : (a₁; b₁; c₁) = (a₂; b₂; c₂) :=
|
(H₃ : cast (congr_arg2 C H₁ H₂) c₁ = c₂) : ⟨a₁, b₁, c₁⟩ = ⟨a₂, b₂, c₂⟩ :=
|
||||||
hdcongr_arg3 dtrip H₁ (heq.from_eq H₂) H₃
|
hdcongr_arg3 dtrip H₁ (heq.from_eq H₂) H₃
|
||||||
|
|
||||||
theorem ndtrip_equal {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} :
|
theorem ndtrip_equal {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} :
|
||||||
|
|
Loading…
Reference in a new issue