refactor(data/sigma): move notation from sigma.thms to sigma.decl

This commit is contained in:
Floris van Doorn 2014-11-20 23:22:19 -05:00 committed by Leonardo de Moura
parent 7bfbe039d9
commit 25f5c56bb2
2 changed files with 18 additions and 17 deletions

View file

@ -7,3 +7,15 @@ structure sigma {A : Type} (B : A → Type) :=
dpair :: (dpr1 : A) (dpr2 : B dpr1) dpair :: (dpr1 : A) (dpr2 : B dpr1)
notation `Σ` binders `,` r:(scoped P, sigma P) := r notation `Σ` binders `,` r:(scoped P, sigma P) := r
namespace sigma
notation `dpr₁` := dpr1
notation `dpr₂` := dpr2
namespace ops
postfix `.1`:10000 := dpr1
postfix `.2`:10000 := dpr2
notation `⟨` t:(foldr `,`:0 (e r, sigma.dpair e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \>
end ops
end sigma

View file

@ -2,24 +2,13 @@
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn -- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
import data.sigma.decl import data.sigma.decl
open inhabited eq.ops open inhabited eq.ops sigma.ops
namespace sigma namespace sigma
notation `dpr₁` := dpr1
notation `dpr₂` := dpr2
namespace ops
postfix `.1`:10000 := dpr1
postfix `.2`:10000 := dpr2
notation `(` t:(foldr `;`:0 (e r, sigma.dpair e r)) `)` := t
end ops
open ops
universe variables u v universe variables u v
variables {A A' : Type.{u}} {B : A → Type.{v}} {B' : A' → Type.{v}} variables {A A' : Type.{u}} {B : A → Type.{v}} {B' : A' → Type.{v}}
definition unpack {C : (Σa, B a) → Type} {u : Σa, B a} (H : C ( u.1 ; u.2)) : C u := definition unpack {C : (Σa, B a) → Type} {u : Σa, B a} (H : C ⟨u.1 , u.2⟩) : C u :=
destruct u (λx y H, H) H destruct u (λx y H, H) H
theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) : theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) :
@ -48,8 +37,8 @@ namespace sigma
variables {C : Πa, B a → Type} {D : Πa b, C a b → Type} variables {C : Πa, B a → Type} {D : Πa b, C a b → Type}
definition dtrip (a : A) (b : B a) (c : C a b) := (a; b; c) definition dtrip (a : A) (b : B a) (c : C a b) := ⟨a, b, c⟩
definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := (a; b; c; d) definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := ⟨a, b, c, d⟩
definition dpr1' (x : Σ a, B a) := x.1 definition dpr1' (x : Σ a, B a) := x.1
definition dpr2' (x : Σ a b, C a b) := x.2.1 definition dpr2' (x : Σ a b, C a b) := x.2.1
@ -59,12 +48,12 @@ namespace sigma
theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
(H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : cast (dcongr_arg2 C H₁ H₂) c₁ = c₂) : (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : cast (dcongr_arg2 C H₁ H₂) c₁ = c₂) :
(a₁; b₁; c₁) = (a₂; b₂; c₂) := ⟨a₁, b₁, c₁⟩ = ⟨a₂, b₂, c₂⟩ :=
dcongr_arg3 dtrip H₁ H₂ H₃ dcongr_arg3 dtrip H₁ H₂ H₃
theorem ndtrip_eq {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B} theorem ndtrip_eq {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B}
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂)
(H₃ : cast (congr_arg2 C H₁ H₂) c₁ = c₂) : (a₁; b₁; c₁) = (a₂; b₂; c₂) := (H₃ : cast (congr_arg2 C H₁ H₂) c₁ = c₂) : ⟨a₁, b₁, c₁⟩ = ⟨a₂, b₂, c₂⟩ :=
hdcongr_arg3 dtrip H₁ (heq.from_eq H₂) H₃ hdcongr_arg3 dtrip H₁ (heq.from_eq H₂) H₃
theorem ndtrip_equal {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} : theorem ndtrip_equal {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} :