feat(hit): define nondependent recursors for all hits, sequential colimit, and elaborate on spheres
squash
This commit is contained in:
parent
ffe158f785
commit
51e87213d0
8 changed files with 543 additions and 128 deletions
97
hott/hit/circle.hlean
Normal file
97
hott/hit/circle.hlean
Normal file
|
@ -0,0 +1,97 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: hit.circle
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
|
Declaration of the circle
|
||||||
|
-/
|
||||||
|
|
||||||
|
import .sphere
|
||||||
|
|
||||||
|
open eq suspension bool sphere_index
|
||||||
|
|
||||||
|
definition circle [reducible] := suspension bool --redefine this as sphere 1
|
||||||
|
|
||||||
|
namespace circle
|
||||||
|
|
||||||
|
definition base1 : circle := !north
|
||||||
|
definition base2 : circle := !south
|
||||||
|
definition seg1 : base1 = base2 := merid tt
|
||||||
|
definition seg2 : base2 = base1 := (merid ff)⁻¹
|
||||||
|
|
||||||
|
definition base : circle := base1
|
||||||
|
definition loop : base = base := seg1 ⬝ seg2
|
||||||
|
|
||||||
|
definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||||||
|
(Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) (x : circle) : P x :=
|
||||||
|
begin
|
||||||
|
fapply (suspension.rec_on x),
|
||||||
|
{ exact Pb1},
|
||||||
|
{ exact Pb2},
|
||||||
|
{ intro b, cases b,
|
||||||
|
apply tr_eq_of_eq_inv_tr, exact Ps2⁻¹,
|
||||||
|
exact Ps1},
|
||||||
|
end
|
||||||
|
|
||||||
|
definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2)
|
||||||
|
(Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) : P x :=
|
||||||
|
circle.rec2 Pb1 Pb2 Ps1 Ps2 x
|
||||||
|
|
||||||
|
definition rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||||||
|
(Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1)
|
||||||
|
: apD (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = sorry ⬝ Ps1 ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
definition rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||||||
|
(Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1)
|
||||||
|
: apD (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = sorry ⬝ Ps2 ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) (x : circle) : P :=
|
||||||
|
rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x
|
||||||
|
|
||||||
|
definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P)
|
||||||
|
(Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) : P :=
|
||||||
|
elim2 Pb1 Pb2 Ps1 Ps2 x
|
||||||
|
|
||||||
|
definition elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1)
|
||||||
|
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = sorry ⬝ Ps1 ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
definition elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1)
|
||||||
|
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = sorry ⬝ Ps2 ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase)
|
||||||
|
(x : circle) : P x :=
|
||||||
|
begin
|
||||||
|
fapply (rec2_on x),
|
||||||
|
{ exact Pbase},
|
||||||
|
{ exact (transport P seg1 Pbase)},
|
||||||
|
{ apply idp},
|
||||||
|
{ apply eq_tr_of_inv_tr_eq, rewrite -tr_con, apply Ploop},
|
||||||
|
end
|
||||||
|
|
||||||
|
protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base)
|
||||||
|
(Ploop : loop ▹ Pbase = Pbase) : P x :=
|
||||||
|
circle.rec Pbase Ploop x
|
||||||
|
|
||||||
|
protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
|
||||||
|
(x : circle) : P :=
|
||||||
|
circle.rec Pbase (tr_constant loop Pbase ⬝ Ploop) x
|
||||||
|
|
||||||
|
protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P)
|
||||||
|
(Ploop : Pbase = Pbase) : P :=
|
||||||
|
elim Pbase Ploop x
|
||||||
|
|
||||||
|
definition rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) :
|
||||||
|
ap (circle.rec Pbase Ploop) loop = sorry ⬝ Ploop ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
definition elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
|
||||||
|
ap (circle.elim Pbase Ploop) loop = sorry ⬝ Ploop ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
end circle
|
88
hott/hit/colimit.hlean
Normal file
88
hott/hit/colimit.hlean
Normal file
|
@ -0,0 +1,88 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: hit.colimit
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
|
Colimits.
|
||||||
|
-/
|
||||||
|
|
||||||
|
/- The hit colimit is primitive, declared in init.hit. -/
|
||||||
|
|
||||||
|
open eq colimit colimit.diagram function
|
||||||
|
|
||||||
|
namespace colimit
|
||||||
|
|
||||||
|
protected definition elim [D : diagram] {P : Type} (Pincl : Π⦃i : Iob⦄ (x : ob i), P)
|
||||||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), Pincl (hom j x) = Pincl x) : colimit D → P :=
|
||||||
|
rec Pincl (λj x, !tr_constant ⬝ Pglue j x)
|
||||||
|
|
||||||
|
protected definition elim_on [reducible] [D : diagram] {P : Type} (y : colimit D)
|
||||||
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P)
|
||||||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), Pincl (hom j x) = Pincl x) : P :=
|
||||||
|
elim Pincl Pglue y
|
||||||
|
|
||||||
|
definition elim_cglue [D : diagram] {P : Type} (Pincl : Π⦃i : Iob⦄ (x : ob i), P)
|
||||||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), Pincl (hom j x) = Pincl x) {j : Ihom} (x : ob (dom j)) :
|
||||||
|
ap (elim Pincl Pglue) (cglue j x) = sorry ⬝ Pglue j x ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
end colimit
|
||||||
|
|
||||||
|
/- definition of a sequential colimit -/
|
||||||
|
open nat
|
||||||
|
|
||||||
|
namespace seq_colimit
|
||||||
|
context
|
||||||
|
parameters {A : ℕ → Type} (f : Π⦃n⦄, A n → A (succ n))
|
||||||
|
variables {n : ℕ} (a : A n)
|
||||||
|
|
||||||
|
definition seq_diagram : diagram :=
|
||||||
|
diagram.mk ℕ ℕ A id succ f
|
||||||
|
local attribute seq_diagram [instance]
|
||||||
|
|
||||||
|
-- TODO: define this in root namespace
|
||||||
|
definition seq_colim {A : ℕ → Type} (f : Π⦃n⦄, A n → A (succ n)) : Type :=
|
||||||
|
colimit seq_diagram
|
||||||
|
|
||||||
|
definition inclusion : seq_colim f :=
|
||||||
|
@colimit.inclusion _ _ a
|
||||||
|
|
||||||
|
abbreviation sι := @inclusion
|
||||||
|
|
||||||
|
definition glue : sι (f a) = sι a :=
|
||||||
|
@cglue _ _ a
|
||||||
|
|
||||||
|
protected definition rec [reducible] {P : seq_colim f → Type}
|
||||||
|
(Pincl : Π⦃n : ℕ⦄ (a : A n), P (sι a))
|
||||||
|
(Pglue : Π(n : ℕ) (a : A n), glue a ▹ Pincl (f a) = Pincl a) : Πaa, P aa :=
|
||||||
|
@colimit.rec _ _ Pincl Pglue
|
||||||
|
|
||||||
|
protected definition rec_on [reducible] {P : seq_colim f → Type} (aa : seq_colim f)
|
||||||
|
(Pincl : Π⦃n : ℕ⦄ (a : A n), P (sι a))
|
||||||
|
(Pglue : Π⦃n : ℕ⦄ (a : A n), glue a ▹ Pincl (f a) = Pincl a)
|
||||||
|
: P aa :=
|
||||||
|
rec Pincl Pglue aa
|
||||||
|
|
||||||
|
protected definition elim {P : Type} (Pincl : Π⦃n : ℕ⦄ (a : A n), P)
|
||||||
|
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) = Pincl a) : seq_colim f → P :=
|
||||||
|
@colimit.elim _ _ Pincl Pglue
|
||||||
|
|
||||||
|
protected definition elim_on [reducible] {P : Type} (aa : seq_colim f)
|
||||||
|
(Pincl : Π⦃n : ℕ⦄ (a : A n), P)
|
||||||
|
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) = Pincl a) : P :=
|
||||||
|
elim Pincl Pglue aa
|
||||||
|
|
||||||
|
definition rec_glue {P : seq_colim f → Type} (Pincl : Π⦃n : ℕ⦄ (a : A n), P (sι a))
|
||||||
|
(Pglue : Π⦃n : ℕ⦄ (a : A n), glue a ▹ Pincl (f a) = Pincl a) {n : ℕ} (a : A n)
|
||||||
|
: apD (rec Pincl Pglue) (glue a) = sorry ⬝ Pglue a ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
definition elim_glue {P : Type} (Pincl : Π⦃n : ℕ⦄ (a : A n), P)
|
||||||
|
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) = Pincl a) {n : ℕ} (a : A n)
|
||||||
|
: ap (elim Pincl Pglue) (glue a) = sorry ⬝ Pglue a ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
end
|
||||||
|
end seq_colimit
|
33
hott/hit/cylinder.hlean
Normal file
33
hott/hit/cylinder.hlean
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: hit.cylinder
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
|
Mapping cylinders
|
||||||
|
-/
|
||||||
|
|
||||||
|
/- The hit mapping cylinder is primitive, declared in init.hit. -/
|
||||||
|
|
||||||
|
open eq
|
||||||
|
|
||||||
|
namespace cylinder
|
||||||
|
|
||||||
|
variables {A B : Type} {f : A → B}
|
||||||
|
|
||||||
|
protected definition elim {P : Type} (Pbase : B → P) (Ptop : A → P)
|
||||||
|
(Pseg : Π(a : A), Ptop a = Pbase (f a)) {b : B} (x : cylinder f b) : P :=
|
||||||
|
cylinder.rec Pbase Ptop (λa, !tr_constant ⬝ Pseg a) x
|
||||||
|
|
||||||
|
protected definition elim_on [reducible] {P : Type} {b : B} (x : cylinder f b)
|
||||||
|
(Pbase : B → P) (Ptop : A → P)
|
||||||
|
(Pseg : Π(a : A), Ptop a = Pbase (f a)) : P :=
|
||||||
|
cylinder.elim Pbase Ptop Pseg x
|
||||||
|
|
||||||
|
definition elim_seg {P : Type} (Pbase : B → P) (Ptop : A → P)
|
||||||
|
(Pseg : Π(a : A), Ptop a = Pbase (f a)) {b : B} (x : cylinder f b) (a : A) :
|
||||||
|
ap (elim Pbase Ptop Pseg) (seg f a) = sorry ⬝ Pseg a ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
end cylinder
|
|
@ -8,6 +8,8 @@ Authors: Floris van Doorn
|
||||||
Declaration of pushout
|
Declaration of pushout
|
||||||
-/
|
-/
|
||||||
|
|
||||||
|
import .colimit
|
||||||
|
|
||||||
open colimit bool eq
|
open colimit bool eq
|
||||||
|
|
||||||
namespace pushout
|
namespace pushout
|
||||||
|
@ -41,7 +43,7 @@ parameters {TL BL TR : Type.{u}} (f : TL → BL) (g : TL → TR)
|
||||||
-- (λj, match j with | tt := bl | ff := tr end)
|
-- (λj, match j with | tt := bl | ff := tr end)
|
||||||
-- (λj, match j with | tt := f | ff := g end)
|
-- (λj, match j with | tt := f | ff := g end)
|
||||||
|
|
||||||
definition pushout := colimit pushout_diag
|
definition pushout := colimit pushout_diag -- TODO: define this in root namespace
|
||||||
local attribute pushout_diag [instance]
|
local attribute pushout_diag [instance]
|
||||||
|
|
||||||
definition inl (x : BL) : pushout :=
|
definition inl (x : BL) : pushout :=
|
||||||
|
@ -77,48 +79,63 @@ parameters {TL BL TR : Type.{u}} (f : TL → BL) (g : TL → TR)
|
||||||
rewrite -Pglue}
|
rewrite -Pglue}
|
||||||
end
|
end
|
||||||
|
|
||||||
protected definition rec_on {P : pushout → Type} (y : pushout) (Pinl : Π(x : BL), P (inl x))
|
protected definition rec_on [reducible] {P : pushout → Type} (y : pushout)
|
||||||
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x)) : P y :=
|
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x))
|
||||||
|
(Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x)) : P y :=
|
||||||
rec Pinl Pinr Pglue y
|
rec Pinl Pinr Pglue y
|
||||||
|
|
||||||
definition comp_inl {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
definition rec_inl {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
||||||
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
||||||
(x : BL) : rec Pinl Pinr Pglue (inl x) = Pinl x :=
|
(x : BL) : rec Pinl Pinr Pglue (inl x) = Pinl x :=
|
||||||
@colimit.comp_incl _ _ _ _ _ _ --idp
|
@colimit.rec_incl _ _ _ _ _ _ --idp
|
||||||
|
|
||||||
definition comp_inr {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
definition rec_inr {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
||||||
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
||||||
(x : TR) : rec Pinl Pinr Pglue (inr x) = Pinr x :=
|
(x : TR) : rec Pinl Pinr Pglue (inr x) = Pinr x :=
|
||||||
@colimit.comp_incl _ _ _ _ _ _ --idp
|
@colimit.rec_incl _ _ _ _ _ _ --idp
|
||||||
|
|
||||||
definition comp_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
||||||
|
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P :=
|
||||||
|
rec Pinl Pinr (λx, !tr_constant ⬝ Pglue x) y
|
||||||
|
|
||||||
|
protected definition elim_on [reducible] {P : Type} (Pinl : BL → P) (y : pushout)
|
||||||
|
(Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P :=
|
||||||
|
elim Pinl Pinr Pglue y
|
||||||
|
|
||||||
|
definition rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
||||||
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
||||||
(x : TL) : apD (rec Pinl Pinr Pglue) (glue x) = sorry ⬝ Pglue x ⬝ sorry :=
|
(x : TL) : apD (rec Pinl Pinr Pglue) (glue x) = sorry ⬝ Pglue x ⬝ sorry :=
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
definition elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
||||||
|
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) (x : TL)
|
||||||
|
: ap (elim Pinl Pinr Pglue) (glue x) = sorry ⬝ Pglue x ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
end
|
end
|
||||||
end pushout
|
|
||||||
|
|
||||||
open pushout equiv is_equiv unit
|
open pushout equiv is_equiv unit
|
||||||
|
|
||||||
namespace test
|
namespace test
|
||||||
definition foo (u : empty) : unit := star
|
definition unit_of_empty (u : empty) : unit := star
|
||||||
|
|
||||||
example : pushout foo foo ≃ bool :=
|
example : pushout unit_of_empty unit_of_empty ≃ bool :=
|
||||||
begin
|
begin
|
||||||
fapply equiv.MK,
|
fapply equiv.MK,
|
||||||
{ intro x, fapply (pushout.rec_on _ _ x),
|
{ intro x, fapply (pushout.rec_on _ _ x),
|
||||||
{ intro u, exact ff},
|
intro u, exact ff,
|
||||||
{ intro u, exact tt},
|
intro u, exact tt,
|
||||||
{ intro c, cases c}},
|
intro c, cases c},
|
||||||
{ intro b, cases b,
|
{ intro b, cases b,
|
||||||
{ exact (inl _ _ ⋆)},
|
exact (inl _ _ ⋆),
|
||||||
{ exact (inr _ _ ⋆)},},
|
exact (inr _ _ ⋆)},
|
||||||
{ intro b, cases b, apply comp_inl, apply comp_inr},
|
{ intro b, cases b, apply rec_inl, apply rec_inr},
|
||||||
{ intro x, fapply (pushout.rec_on _ _ x),
|
{ intro x, fapply (pushout.rec_on _ _ x),
|
||||||
{ intro u, cases u, rewrite [↑function.compose,↑pushout.rec_on,comp_inl]},
|
intro u, cases u, rewrite [↑function.compose,↑pushout.rec_on,rec_inl],
|
||||||
{ intro u, cases u, rewrite [↑function.compose,↑pushout.rec_on,comp_inr]},
|
intro u, cases u, rewrite [↑function.compose,↑pushout.rec_on,rec_inr],
|
||||||
{ intro c, cases c}},
|
intro c, cases c},
|
||||||
end
|
end
|
||||||
|
|
||||||
end test
|
end test
|
||||||
|
end pushout
|
||||||
|
|
85
hott/hit/sphere.hlean
Normal file
85
hott/hit/sphere.hlean
Normal file
|
@ -0,0 +1,85 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: hit.circle
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
|
Declaration of the n-spheres
|
||||||
|
-/
|
||||||
|
|
||||||
|
import .suspension
|
||||||
|
|
||||||
|
open eq nat suspension bool is_trunc unit
|
||||||
|
|
||||||
|
/- We can define spheres with the following possible indices:
|
||||||
|
- trunc_index
|
||||||
|
- nat
|
||||||
|
- nat, but counting wrong (S^0 = empty, S^1 = bool, ...)
|
||||||
|
- some new type "integers >= 1"
|
||||||
|
-/
|
||||||
|
|
||||||
|
/- Sphere levels -/
|
||||||
|
|
||||||
|
inductive sphere_index : Type₀ :=
|
||||||
|
| minus_one : sphere_index
|
||||||
|
| succ : sphere_index → sphere_index
|
||||||
|
|
||||||
|
namespace sphere_index
|
||||||
|
/-
|
||||||
|
notation for sphere_index is -1, 0, 1, ...
|
||||||
|
from 0 and up this comes from a coercion from num to sphere_index (via nat)
|
||||||
|
-/
|
||||||
|
postfix `.+1`:(max+1) := sphere_index.succ
|
||||||
|
postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1)
|
||||||
|
notation `-1` := minus_one
|
||||||
|
export [coercions] nat
|
||||||
|
|
||||||
|
definition add (n m : sphere_index) : sphere_index :=
|
||||||
|
sphere_index.rec_on m n (λ k l, l .+1)
|
||||||
|
|
||||||
|
definition leq (n m : sphere_index) : Type₁ :=
|
||||||
|
sphere_index.rec_on n (λm, unit) (λ n p m, sphere_index.rec_on m (λ p, empty) (λ m q p, p m) p) m
|
||||||
|
|
||||||
|
infix `+1+`:65 := sphere_index.add
|
||||||
|
|
||||||
|
notation x <= y := sphere_index.leq x y
|
||||||
|
notation x ≤ y := sphere_index.leq x y
|
||||||
|
|
||||||
|
definition succ_le_succ {n m : sphere_index} (H : n ≤ m) : n.+1 ≤ m.+1 := H
|
||||||
|
definition le_of_succ_le_succ {n m : sphere_index} (H : n.+1 ≤ m.+1) : n ≤ m := H
|
||||||
|
definition minus_two_le (n : sphere_index) : -1 ≤ n := star
|
||||||
|
definition empty_of_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤ -1) : empty := H
|
||||||
|
|
||||||
|
definition of_nat [coercion] [reducible] (n : nat) : sphere_index :=
|
||||||
|
nat.rec_on n (-1.+1) (λ n k, k.+1)
|
||||||
|
|
||||||
|
definition trunc_index_of_sphere_index [coercion] [reducible] (n : sphere_index) : trunc_index :=
|
||||||
|
sphere_index.rec_on n -1 (λ n k, k.+1)
|
||||||
|
end sphere_index
|
||||||
|
|
||||||
|
open sphere_index equiv
|
||||||
|
|
||||||
|
definition sphere : sphere_index → Type₀
|
||||||
|
| -1 := empty
|
||||||
|
| n.+1 := suspension (sphere n)
|
||||||
|
|
||||||
|
namespace sphere
|
||||||
|
namespace ops
|
||||||
|
abbreviation S := sphere
|
||||||
|
end ops
|
||||||
|
|
||||||
|
definition bool_of_sphere [reducible] : sphere 0 → bool :=
|
||||||
|
suspension.rec tt ff (λx, empty.elim _ x)
|
||||||
|
|
||||||
|
definition sphere_of_bool [reducible] : bool → sphere 0
|
||||||
|
| tt := !north
|
||||||
|
| ff := !south
|
||||||
|
|
||||||
|
definition sphere_equiv_bool : sphere 0 ≃ bool :=
|
||||||
|
equiv.MK bool_of_sphere
|
||||||
|
sphere_of_bool
|
||||||
|
sorry --idp
|
||||||
|
sorry --idp
|
||||||
|
|
||||||
|
end sphere
|
|
@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Module: hit.suspension
|
Module: hit.suspension
|
||||||
Authors: Floris van Doorn
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
Declaration of suspension and spheres
|
Declaration of suspension
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import .pushout
|
import .pushout
|
||||||
|
@ -26,72 +26,33 @@ namespace suspension
|
||||||
glue _ _ a
|
glue _ _ a
|
||||||
|
|
||||||
protected definition rec {A : Type} {P : suspension A → Type} (PN : P !north) (PS : P !south)
|
protected definition rec {A : Type} {P : suspension A → Type} (PN : P !north) (PS : P !south)
|
||||||
(Pmerid : Π(a : A), merid a ▹ PN = PS) (x : suspension A) : P x :=
|
(Pm : Π(a : A), merid a ▹ PN = PS) (x : suspension A) : P x :=
|
||||||
begin
|
begin
|
||||||
fapply (pushout.rec_on _ _ x),
|
fapply (pushout.rec_on _ _ x),
|
||||||
{ intro u, cases u, exact PN},
|
{ intro u, cases u, exact PN},
|
||||||
{ intro u, cases u, exact PS},
|
{ intro u, cases u, exact PS},
|
||||||
{ exact Pmerid},
|
{ exact Pm},
|
||||||
end
|
end
|
||||||
|
|
||||||
protected definition rec_on {A : Type} {P : suspension A → Type} (y : suspension A)
|
protected definition rec_on [reducible] {A : Type} {P : suspension A → Type} (y : suspension A)
|
||||||
(PN : P !north) (PS : P !south) (Pmerid : Π(a : A), merid a ▹ PN = PS) : P y :=
|
(PN : P !north) (PS : P !south) (Pm : Π(a : A), merid a ▹ PN = PS) : P y :=
|
||||||
rec PN PS Pmerid y
|
rec PN PS Pm y
|
||||||
|
|
||||||
|
definition rec_merid {A : Type} {P : suspension A → Type} (PN : P !north) (PS : P !south)
|
||||||
|
(Pm : Π(a : A), merid a ▹ PN = PS) (a : A)
|
||||||
|
: apD (rec PN PS Pm) (merid a) = sorry ⬝ Pm a ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
protected definition elim {A : Type} {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS)
|
||||||
|
(x : suspension A) : P :=
|
||||||
|
rec PN PS (λa, !tr_constant ⬝ Pm a) x
|
||||||
|
|
||||||
|
protected definition elim_on [reducible] {A : Type} {P : Type} (x : suspension A)
|
||||||
|
(PN : P) (PS : P) (Pm : A → PN = PS) : P :=
|
||||||
|
rec PN PS (λa, !tr_constant ⬝ Pm a) x
|
||||||
|
|
||||||
|
protected definition elim_merid {A : Type} {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS)
|
||||||
|
(x : suspension A) (a : A) : ap (elim PN PS Pm) (merid a) = sorry ⬝ Pm a ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
end suspension
|
end suspension
|
||||||
|
|
||||||
open nat suspension bool
|
|
||||||
|
|
||||||
definition sphere (n : ℕ) := nat.rec_on n bool (λk Sk, suspension Sk)
|
|
||||||
definition circle [reducible] := sphere 1
|
|
||||||
|
|
||||||
namespace circle
|
|
||||||
|
|
||||||
definition base : circle := !north
|
|
||||||
definition loop : base = base := merid tt ⬝ (merid ff)⁻¹
|
|
||||||
|
|
||||||
protected definition rec2 {P : circle → Type} (PN : P !north) (PS : P !south)
|
|
||||||
(Pff : merid ff ▹ PN = PS) (Ptt : merid tt ▹ PN = PS) (x : circle) : P x :=
|
|
||||||
begin
|
|
||||||
fapply (suspension.rec_on x),
|
|
||||||
{ exact PN},
|
|
||||||
{ exact PS},
|
|
||||||
{ intro b, cases b, exact Pff, exact Ptt},
|
|
||||||
end
|
|
||||||
|
|
||||||
protected definition rec2_on {P : circle → Type} (x : circle) (PN : P !north) (PS : P !south)
|
|
||||||
(Pff : merid ff ▹ PN = PS) (Ptt : merid tt ▹ PN = PS) : P x :=
|
|
||||||
circle.rec2 PN PS Pff Ptt x
|
|
||||||
|
|
||||||
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase)
|
|
||||||
(x : circle) : P x :=
|
|
||||||
begin
|
|
||||||
fapply (rec2_on x),
|
|
||||||
{ exact Pbase},
|
|
||||||
{ sexact (merid ff ▹ Pbase)},
|
|
||||||
{ apply idp},
|
|
||||||
{ apply eq_tr_of_inv_tr_eq, rewrite -tr_con, apply Ploop},
|
|
||||||
end
|
|
||||||
|
|
||||||
protected definition rec_on {P : circle → Type} (x : circle) (Pbase : P base)
|
|
||||||
(Ploop : loop ▹ Pbase = Pbase) : P x :=
|
|
||||||
circle.rec Pbase Ploop x
|
|
||||||
|
|
||||||
protected definition rec_constant {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
|
|
||||||
(x : circle) : P :=
|
|
||||||
circle.rec Pbase (tr_constant loop Pbase ⬝ Ploop) x
|
|
||||||
|
|
||||||
definition comp_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) :
|
|
||||||
ap (circle.rec Pbase Ploop) loop = sorry ⬝ Ploop ⬝ sorry :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
definition comp_constant_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
|
|
||||||
ap (circle.rec_constant Pbase Ploop) loop = sorry ⬝ Ploop ⬝ sorry :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
protected definition rec_on_constant {P : Type} (x : circle) (Pbase : P) (Ploop : Pbase = Pbase)
|
|
||||||
: P :=
|
|
||||||
rec_constant Pbase Ploop x
|
|
||||||
|
|
||||||
end circle
|
|
||||||
|
|
136
hott/hit/trunc.hlean
Normal file
136
hott/hit/trunc.hlean
Normal file
|
@ -0,0 +1,136 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: hit.trunc
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
|
n-truncation of types.
|
||||||
|
|
||||||
|
Ported from Coq HoTT
|
||||||
|
-/
|
||||||
|
|
||||||
|
/- The hit n-truncation is primitive, declared in init.hit. -/
|
||||||
|
|
||||||
|
import types.sigma
|
||||||
|
|
||||||
|
open is_trunc eq equiv is_equiv function prod sum sigma
|
||||||
|
|
||||||
|
namespace trunc
|
||||||
|
|
||||||
|
protected definition elim {n : trunc_index} {A : Type} {P : Type}
|
||||||
|
[Pt : is_trunc n P] (H : A → P) : trunc n A → P :=
|
||||||
|
rec H
|
||||||
|
|
||||||
|
protected definition elim_on {n : trunc_index} {A : Type} {P : Type} (aa : trunc n A)
|
||||||
|
[Pt : is_trunc n P] (H : A → P) : P :=
|
||||||
|
elim H aa
|
||||||
|
|
||||||
|
exit
|
||||||
|
|
||||||
|
variables {X Y Z : Type} {P : X → Type} (A B : Type) (n : trunc_index)
|
||||||
|
|
||||||
|
local attribute is_trunc_eq [instance]
|
||||||
|
|
||||||
|
definition is_equiv_tr [instance] [H : is_trunc n A] : is_equiv (@tr n A) :=
|
||||||
|
adjointify _
|
||||||
|
(trunc.rec id)
|
||||||
|
(λaa, trunc.rec_on aa (λa, idp))
|
||||||
|
(λa, idp)
|
||||||
|
|
||||||
|
definition equiv_trunc [H : is_trunc n A] : A ≃ trunc n A :=
|
||||||
|
equiv.mk tr _
|
||||||
|
|
||||||
|
definition is_trunc_of_is_equiv_tr [H : is_equiv (@tr n A)] : is_trunc n A :=
|
||||||
|
is_trunc_is_equiv_closed n tr⁻¹
|
||||||
|
|
||||||
|
definition untrunc_of_is_trunc [reducible] [H : is_trunc n A] : trunc n A → A :=
|
||||||
|
tr⁻¹
|
||||||
|
|
||||||
|
/- Functoriality -/
|
||||||
|
definition trunc_functor (f : X → Y) : trunc n X → trunc n Y :=
|
||||||
|
λxx, trunc_rec_on xx (λx, tr (f x))
|
||||||
|
-- by intro xx; apply (trunc_rec_on xx); intro x; exact (tr (f x))
|
||||||
|
-- by intro xx; fapply (trunc_rec_on xx); intro x; exact (tr (f x))
|
||||||
|
-- by intro xx; exact (trunc_rec_on xx (λx, (tr (f x))))
|
||||||
|
|
||||||
|
definition trunc_functor_compose (f : X → Y) (g : Y → Z)
|
||||||
|
: trunc_functor n (g ∘ f) ∼ trunc_functor n g ∘ trunc_functor n f :=
|
||||||
|
λxx, trunc_rec_on xx (λx, idp)
|
||||||
|
|
||||||
|
definition trunc_functor_id : trunc_functor n (@id A) ∼ id :=
|
||||||
|
λxx, trunc_rec_on xx (λx, idp)
|
||||||
|
|
||||||
|
definition is_equiv_trunc_functor (f : X → Y) [H : is_equiv f] : is_equiv (trunc_functor n f) :=
|
||||||
|
adjointify _
|
||||||
|
(trunc_functor n f⁻¹)
|
||||||
|
(λyy, trunc_rec_on yy (λy, ap tr !retr))
|
||||||
|
(λxx, trunc_rec_on xx (λx, ap tr !sect))
|
||||||
|
|
||||||
|
section
|
||||||
|
open prod.ops
|
||||||
|
definition trunc_prod_equiv : trunc n (X × Y) ≃ trunc n X × trunc n Y :=
|
||||||
|
sorry
|
||||||
|
-- equiv.MK (λpp, trunc_rec_on pp (λp, (tr p.1, tr p.2)))
|
||||||
|
-- (λp, trunc_rec_on p.1 (λx, trunc_rec_on p.2 (λy, tr (x,y))))
|
||||||
|
-- sorry --(λp, trunc_rec_on p.1 (λx, trunc_rec_on p.2 (λy, idp)))
|
||||||
|
-- (λpp, trunc_rec_on pp (λp, prod.rec_on p (λx y, idp)))
|
||||||
|
|
||||||
|
-- begin
|
||||||
|
-- fapply equiv.MK,
|
||||||
|
-- apply sorry, --{exact (λpp, trunc_rec_on pp (λp, (tr p.1, tr p.2)))},
|
||||||
|
-- apply sorry, /-{intro p, cases p with (xx, yy),
|
||||||
|
-- apply (trunc_rec_on xx), intro x,
|
||||||
|
-- apply (trunc_rec_on yy), intro y, exact (tr (x,y))},-/
|
||||||
|
-- apply sorry, /-{intro p, cases p with (xx, yy),
|
||||||
|
-- apply (trunc_rec_on xx), intro x,
|
||||||
|
-- apply (trunc_rec_on yy), intro y, apply idp},-/
|
||||||
|
-- apply sorry --{intro pp, apply (trunc_rec_on pp), intro p, cases p, apply idp},
|
||||||
|
-- end
|
||||||
|
end
|
||||||
|
|
||||||
|
/- Propositional truncation -/
|
||||||
|
|
||||||
|
-- should this live in hprop?
|
||||||
|
definition merely [reducible] (A : Type) : Type := trunc -1 A
|
||||||
|
|
||||||
|
notation `||`:max A `||`:0 := merely A
|
||||||
|
notation `∥`:max A `∥`:0 := merely A
|
||||||
|
|
||||||
|
definition Exists [reducible] (P : X → Type) : Type := ∥ sigma P ∥
|
||||||
|
definition or [reducible] (A B : Type) : Type := ∥ A ⊎ B ∥
|
||||||
|
|
||||||
|
notation `exists` binders `,` r:(scoped P, Exists P) := r
|
||||||
|
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||||||
|
notation A `\/` B := or A B
|
||||||
|
notation A ∨ B := or A B
|
||||||
|
|
||||||
|
definition merely.intro [reducible] (a : A) : ∥ A ∥ := tr a
|
||||||
|
definition exists.intro [reducible] (x : X) (p : P x) : ∃x, P x := tr ⟨x, p⟩
|
||||||
|
definition or.intro_left [reducible] (x : X) : X ∨ Y := tr (inl x)
|
||||||
|
definition or.intro_right [reducible] (y : Y) : X ∨ Y := tr (inr y)
|
||||||
|
|
||||||
|
definition is_contr_of_merely_hprop [H : is_hprop A] (aa : merely A) : is_contr A :=
|
||||||
|
is_contr_of_inhabited_hprop (trunc_rec_on aa id)
|
||||||
|
|
||||||
|
section
|
||||||
|
open sigma.ops
|
||||||
|
definition trunc_sigma_equiv : trunc n (Σ x, P x) ≃ trunc n (Σ x, trunc n (P x)) :=
|
||||||
|
equiv.MK (λpp, trunc_rec_on pp (λp, tr ⟨p.1, tr p.2⟩))
|
||||||
|
(λpp, trunc_rec_on pp (λp, trunc_rec_on p.2 (λb, tr ⟨p.1, b⟩)))
|
||||||
|
(λpp, trunc_rec_on pp (λp, sigma.rec_on p (λa bb, trunc_rec_on bb (λb, idp))))
|
||||||
|
(λpp, trunc_rec_on pp (λp, sigma.rec_on p (λa b, idp)))
|
||||||
|
|
||||||
|
definition trunc_sigma_equiv_of_is_trunc [H : is_trunc n X]
|
||||||
|
: trunc n (Σ x, P x) ≃ Σ x, trunc n (P x) :=
|
||||||
|
calc
|
||||||
|
trunc n (Σ x, P x) ≃ trunc n (Σ x, trunc n (P x)) : trunc_sigma_equiv
|
||||||
|
... ≃ Σ x, trunc n (P x) : equiv.symm !equiv_trunc
|
||||||
|
end
|
||||||
|
|
||||||
|
end trunc
|
||||||
|
|
||||||
|
|
||||||
|
protected definition rec_on {n : trunc_index} {A : Type} {P : trunc n A → Type} (aa : trunc n A)
|
||||||
|
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) : P aa :=
|
||||||
|
trunc.rec H aa
|
|
@ -14,6 +14,23 @@ import .trunc
|
||||||
|
|
||||||
open is_trunc eq
|
open is_trunc eq
|
||||||
|
|
||||||
|
/-
|
||||||
|
We take three higher inductive types (hits) as primitive notions in Lean. We define all other hits
|
||||||
|
in terms of these three hits. The hits which are primitive are
|
||||||
|
- n-truncation
|
||||||
|
- the mapping cylinder
|
||||||
|
- general colimits
|
||||||
|
For each of the hits we add the following constants:
|
||||||
|
- the type formation
|
||||||
|
- the term and path constructors
|
||||||
|
- the dependent recursor
|
||||||
|
We add the computation rule for point constructors judgmentally to the kernel of Lean, and for the
|
||||||
|
path constructors (undecided).
|
||||||
|
|
||||||
|
In this file we only define the dependent recursor. For the nondependent recursor and all other
|
||||||
|
uses of these hits, see the folder /hott/hit/
|
||||||
|
-/
|
||||||
|
|
||||||
constant trunc.{u} (n : trunc_index) (A : Type.{u}) : Type.{u}
|
constant trunc.{u} (n : trunc_index) (A : Type.{u}) : Type.{u}
|
||||||
|
|
||||||
namespace trunc
|
namespace trunc
|
||||||
|
@ -26,11 +43,11 @@ namespace trunc
|
||||||
/-protected-/ constant rec {n : trunc_index} {A : Type} {P : trunc n A → Type}
|
/-protected-/ constant rec {n : trunc_index} {A : Type} {P : trunc n A → Type}
|
||||||
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) : Πaa, P aa
|
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) : Πaa, P aa
|
||||||
|
|
||||||
protected definition rec_on {n : trunc_index} {A : Type} {P : trunc n A → Type} (aa : trunc n A)
|
protected definition rec_on [reducible] {n : trunc_index} {A : Type} {P : trunc n A → Type}
|
||||||
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) : P aa :=
|
(aa : trunc n A) [Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) : P aa :=
|
||||||
trunc.rec H aa
|
trunc.rec H aa
|
||||||
|
|
||||||
definition comp_tr {n : trunc_index} {A : Type} {P : trunc n A → Type}
|
definition rec_tr [reducible] {n : trunc_index} {A : Type} {P : trunc n A → Type}
|
||||||
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) (a : A) : trunc.rec H (tr a) = H a :=
|
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) (a : A) : trunc.rec H (tr a) = H a :=
|
||||||
sorry --idp
|
sorry --idp
|
||||||
|
|
||||||
|
@ -53,28 +70,28 @@ namespace cylinder
|
||||||
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a))
|
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a))
|
||||||
: Π{b : B} (x : cylinder f b), P x
|
: Π{b : B} (x : cylinder f b), P x
|
||||||
|
|
||||||
protected definition rec_on {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
protected definition rec_on [reducible] {A B : Type} {f : A → B}
|
||||||
{b : B} (x : cylinder f b) (Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
{P : Π{b : B}, cylinder f b → Type} {b : B} (x : cylinder f b) (Pbase : Π(b : B), P (base f b))
|
||||||
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) : P x :=
|
(Ptop : Π(a : A), P (top f a)) (Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) : P x :=
|
||||||
cylinder.rec Pbase Ptop Pseg x
|
cylinder.rec Pbase Ptop Pseg x
|
||||||
|
|
||||||
definition comp_base {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
definition rec_base [reducible] {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
||||||
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
||||||
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) (b : B) :
|
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) (b : B) :
|
||||||
cylinder.rec Pbase Ptop Pseg (base f b) = Pbase b :=
|
cylinder.rec Pbase Ptop Pseg (base f b) = Pbase b :=
|
||||||
sorry --idp
|
sorry --idp
|
||||||
|
|
||||||
definition comp_top {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
definition rec_top [reducible] {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
||||||
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
||||||
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) (a : A) :
|
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) (a : A) :
|
||||||
cylinder.rec Pbase Ptop Pseg (top f a) = Ptop a :=
|
cylinder.rec Pbase Ptop Pseg (top f a) = Ptop a :=
|
||||||
sorry --idp
|
sorry --idp
|
||||||
|
|
||||||
definition comp_seg {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
definition rec_seg [reducible] {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
||||||
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
||||||
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) (a : A) :
|
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) (a : A) :
|
||||||
apD (cylinder.rec Pbase Ptop Pseg) (seg f a) = sorry ⬝ Pseg a ⬝ sorry :=
|
apD (cylinder.rec Pbase Ptop Pseg) (seg f a) = sorry ⬝ Pseg a ⬝ sorry :=
|
||||||
--the sorry's in the statement can be removed when comp_base/comp_top are definitional
|
--the sorry's in the statement can be removed when rec_base/rec_top are definitional
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
end cylinder
|
end cylinder
|
||||||
|
@ -88,7 +105,7 @@ structure diagram [class] :=
|
||||||
(dom cod : Ihom → Iob)
|
(dom cod : Ihom → Iob)
|
||||||
(hom : Π(j : Ihom), ob (dom j) → ob (cod j))
|
(hom : Π(j : Ihom), ob (dom j) → ob (cod j))
|
||||||
end colimit
|
end colimit
|
||||||
open eq colimit colimit.diagram
|
open colimit colimit.diagram
|
||||||
|
|
||||||
constant colimit.{u v w} : diagram.{u v w} → Type.{max u v w}
|
constant colimit.{u v w} : diagram.{u v w} → Type.{max u v w}
|
||||||
|
|
||||||
|
@ -104,41 +121,22 @@ namespace colimit
|
||||||
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
||||||
(y : colimit D), P y
|
(y : colimit D), P y
|
||||||
|
|
||||||
definition comp_incl [D : diagram] {P : colimit D → Type}
|
definition rec_incl [reducible] [D : diagram] {P : colimit D → Type}
|
||||||
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
||||||
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
||||||
{i : Iob} (x : ob i) : rec Pincl Pglue (ι x) = Pincl x :=
|
{i : Iob} (x : ob i) : rec Pincl Pglue (ι x) = Pincl x :=
|
||||||
sorry --idp
|
sorry --idp
|
||||||
|
|
||||||
definition comp_cglue [D : diagram] {P : colimit D → Type}
|
definition rec_cglue [reducible] [D : diagram] {P : colimit D → Type}
|
||||||
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
||||||
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
||||||
{j : Ihom} (x : ob (dom j)) : apD (rec Pincl Pglue) (cglue j x) = sorry ⬝ Pglue j x ⬝ sorry :=
|
{j : Ihom} (x : ob (dom j)) : apD (rec Pincl Pglue) (cglue j x) = sorry ⬝ Pglue j x ⬝ sorry :=
|
||||||
--the sorry's in the statement can be removed when comp_incl is definitional
|
--the sorry's in the statement can be removed when rec_incl is definitional
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
protected definition rec_on [D : diagram] {P : colimit D → Type} (y : colimit D)
|
protected definition rec_on [reducible] [D : diagram] {P : colimit D → Type} (y : colimit D)
|
||||||
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
||||||
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x) : P y :=
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x) : P y :=
|
||||||
colimit.rec Pincl Pglue y
|
colimit.rec Pincl Pglue y
|
||||||
|
|
||||||
end colimit
|
end colimit
|
||||||
|
|
||||||
exit
|
|
||||||
--ALTERNATIVE: COLIMIT without definition "diagram"
|
|
||||||
constant colimit.{u v w} : Π {I : Type.{u}} {J : Type.{v}} (ob : I → Type.{w}) {dom : J → I}
|
|
||||||
{cod : J → I} (hom : Π⦃j : J⦄, ob (dom j) → ob (cod j)), Type.{max u v w}
|
|
||||||
|
|
||||||
namespace colimit
|
|
||||||
|
|
||||||
constant inclusion : Π {I J : Type} {ob : I → Type} {dom : J → I} {cod : J → I}
|
|
||||||
(hom : Π⦃j : J⦄, ob (dom j) → ob (cod j)) {i : I}, ob i → colimit ob hom
|
|
||||||
abbreviation ι := @inclusion
|
|
||||||
|
|
||||||
constant glue : Π {I J : Type} {ob : I → Type} {dom : J → I} {cod : J → I}
|
|
||||||
(hom : Π⦃j : J⦄, ob (dom j) → ob (cod j)) (j : J) (a : ob (dom j)), ι hom (hom a) = ι hom a
|
|
||||||
|
|
||||||
/-protected-/ constant rec : Π {I J : Type} {ob : I → Type} {dom : J → I} {cod : J → I}
|
|
||||||
(hom : Π⦃j : J⦄, ob (dom j) → ob (cod j)) {P : colimit ob hom → Type}
|
|
||||||
-- ...
|
|
||||||
end colimit
|
|
||||||
|
|
Loading…
Reference in a new issue