feat(hott/algebra/precategory): do lots of stuff with categories
This commit is contained in:
parent
b5acbb2228
commit
71f9a5d1d2
10 changed files with 373 additions and 95 deletions
|
@ -14,9 +14,11 @@ open iso is_equiv eq is_trunc
|
||||||
-- that the function from paths to isomorphisms,
|
-- that the function from paths to isomorphisms,
|
||||||
-- is an equivalecnce.
|
-- is an equivalecnce.
|
||||||
namespace category
|
namespace category
|
||||||
|
definition is_univalent [reducible] {ob : Type} (C : precategory ob) :=
|
||||||
|
Π(a b : ob), is_equiv (@iso_of_eq ob C a b)
|
||||||
|
|
||||||
structure category [class] (ob : Type) extends parent : precategory ob :=
|
structure category [class] (ob : Type) extends parent : precategory ob :=
|
||||||
(iso_of_path_equiv : Π (a b : ob), is_equiv (@iso_of_eq ob parent a b))
|
(iso_of_path_equiv : is_univalent parent)
|
||||||
|
|
||||||
attribute category [multiple-instances]
|
attribute category [multiple-instances]
|
||||||
|
|
||||||
|
@ -34,7 +36,7 @@ namespace category
|
||||||
-- TODO: Unsafe class instance?
|
-- TODO: Unsafe class instance?
|
||||||
attribute iso_of_path_equiv [instance]
|
attribute iso_of_path_equiv [instance]
|
||||||
|
|
||||||
definition eq_of_iso (a b : ob) : a ≅ b → a = b :=
|
definition eq_of_iso {a b : ob} : a ≅ b → a = b :=
|
||||||
iso_of_eq⁻¹ᵉ
|
iso_of_eq⁻¹ᵉ
|
||||||
|
|
||||||
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
|
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
|
||||||
|
@ -64,8 +66,7 @@ namespace category
|
||||||
|
|
||||||
definition category.Mk [reducible] := Category.mk
|
definition category.Mk [reducible] := Category.mk
|
||||||
definition category.MK [reducible] (C : Precategory)
|
definition category.MK [reducible] (C : Precategory)
|
||||||
(H : Π (a b : C), is_equiv (@iso_of_eq C C a b)) : Category :=
|
(H : is_univalent C) : Category := Category.mk C (category.mk' C C H)
|
||||||
Category.mk C (category.mk' C C H)
|
|
||||||
|
|
||||||
definition Category.eta (C : Category) : Category.mk C C = C :=
|
definition Category.eta (C : Category) : Category.mk C C = C :=
|
||||||
Category.rec (λob c, idp) C
|
Category.rec (λob c, idp) C
|
||||||
|
|
|
@ -59,7 +59,7 @@ namespace category
|
||||||
definition equiv_eq_iso (A B : Precategory_hset) : (A ≃ B) = (A ≅ B) :=
|
definition equiv_eq_iso (A B : Precategory_hset) : (A ≃ B) = (A ≅ B) :=
|
||||||
ua !equiv_equiv_iso
|
ua !equiv_equiv_iso
|
||||||
|
|
||||||
definition is_univalent (A B : Precategory_hset) : is_equiv (@iso_of_eq _ _ A B) :=
|
definition is_univalent_hset (A B : Precategory_hset) : is_equiv (@iso_of_eq _ _ A B) :=
|
||||||
have H : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
have H : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
||||||
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from
|
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from
|
||||||
@is_equiv_compose _ _ _ _ _
|
@is_equiv_compose _ _ _ _ _
|
||||||
|
@ -74,7 +74,7 @@ namespace category
|
||||||
end set
|
end set
|
||||||
|
|
||||||
definition category_hset [reducible] [instance] : category hset :=
|
definition category_hset [reducible] [instance] : category hset :=
|
||||||
category.mk' hset precategory_hset set.is_univalent
|
category.mk' hset precategory_hset set.is_univalent_hset
|
||||||
|
|
||||||
definition Category_hset [reducible] : Category :=
|
definition Category_hset [reducible] : Category :=
|
||||||
Category.mk hset category_hset
|
Category.mk hset category_hset
|
||||||
|
@ -83,4 +83,57 @@ namespace category
|
||||||
abbreviation set := Category_hset
|
abbreviation set := Category_hset
|
||||||
end ops
|
end ops
|
||||||
|
|
||||||
|
section functor
|
||||||
|
open functor nat_trans
|
||||||
|
|
||||||
|
variables {C : Precategory} {D : Category} {F G : D ^c C}
|
||||||
|
definition eq_of_iso_functor_ob (η : F ≅ G) (c : C) : F c = G c :=
|
||||||
|
by apply eq_of_iso; apply componentwise_iso; exact η
|
||||||
|
|
||||||
|
|
||||||
|
definition eq_of_iso_functor (η : F ≅ G) : F = G :=
|
||||||
|
begin
|
||||||
|
fapply functor_eq_mk,
|
||||||
|
{exact (eq_of_iso_functor_ob η)},
|
||||||
|
{intros (c, c', f),
|
||||||
|
apply concat,
|
||||||
|
{apply (ap (λx, to_hom x ∘ to_fun_hom F f ∘ _)), apply (retr iso_of_eq)},
|
||||||
|
apply concat,
|
||||||
|
{apply (ap (λx, _ ∘ to_fun_hom F f ∘ (to_hom x)⁻¹)), apply (retr iso_of_eq)},
|
||||||
|
apply inverse, apply naturality_iso}
|
||||||
|
end
|
||||||
|
|
||||||
|
--the following error is a bug?
|
||||||
|
-- definition is_univalent_functor (C : Precategory) (D : Category) : is_univalent (D ^c C) :=
|
||||||
|
-- λ(F G : D ^c C), adjointify _ eq_of_iso_functor sorry sorry
|
||||||
|
|
||||||
|
-- definition iso_of_hom
|
||||||
|
|
||||||
|
definition iso_of_eq_eq_of_iso_functor (η : F ≅ G) : iso_of_eq (eq_of_iso_functor η) = η :=
|
||||||
|
begin
|
||||||
|
apply iso.eq_mk,
|
||||||
|
apply nat_trans_eq_mk,
|
||||||
|
intro c,
|
||||||
|
apply concat, apply natural_map_hom_of_eq,
|
||||||
|
apply concat, {apply (ap hom_of_eq), apply ap010_functor_eq_mk},
|
||||||
|
apply concat, {apply (ap to_hom), apply (retr iso_of_eq)},
|
||||||
|
apply idp
|
||||||
|
end
|
||||||
|
--check natural_map_
|
||||||
|
definition eq_of_iso_functor_iso_of_eq (p : F = G) : eq_of_iso_functor (iso_of_eq p) = p :=
|
||||||
|
begin
|
||||||
|
apply sorry
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_univalent_functor (C : Precategory) (D : Category) : is_univalent (D ^c C) :=
|
||||||
|
λF G, adjointify _ eq_of_iso_functor
|
||||||
|
iso_of_eq_eq_of_iso_functor
|
||||||
|
eq_of_iso_functor_iso_of_eq
|
||||||
|
|
||||||
|
end functor
|
||||||
|
|
||||||
|
|
||||||
|
definition category_functor (C : Precategory) (D : Category) : Category :=
|
||||||
|
category.MK (D ^c C) (is_univalent_functor C D)
|
||||||
|
|
||||||
end category
|
end category
|
||||||
|
|
|
@ -47,6 +47,8 @@ namespace category
|
||||||
|
|
||||||
definition id_comp (a : ob) : ID a ∘ ID a = ID a := !id_left
|
definition id_comp (a : ob) : ID a ∘ ID a = ID a := !id_left
|
||||||
|
|
||||||
|
definition id_leftright (f : hom a b) : id ∘ f ∘ id = f := !id_left ⬝ !id_right
|
||||||
|
|
||||||
definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
|
definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
|
||||||
calc i = i ∘ id : by rewrite id_right
|
calc i = i ∘ id : by rewrite id_right
|
||||||
... = id : by rewrite H
|
... = id : by rewrite H
|
||||||
|
@ -61,7 +63,6 @@ namespace category
|
||||||
definition is_hprop_eq_hom [instance] : is_hprop (f = f') :=
|
definition is_hprop_eq_hom [instance] : is_hprop (f = f') :=
|
||||||
!is_trunc_eq
|
!is_trunc_eq
|
||||||
|
|
||||||
|
|
||||||
end basic_lemmas
|
end basic_lemmas
|
||||||
context squares
|
context squares
|
||||||
parameters {ob : Type} [C : precategory ob]
|
parameters {ob : Type} [C : precategory ob]
|
||||||
|
|
|
@ -151,7 +151,7 @@ namespace category
|
||||||
definition Precategory_hset [reducible] : Precategory :=
|
definition Precategory_hset [reducible] : Precategory :=
|
||||||
Precategory.mk hset precategory_hset
|
Precategory.mk hset precategory_hset
|
||||||
|
|
||||||
section precategory_functor
|
section
|
||||||
open iso functor nat_trans
|
open iso functor nat_trans
|
||||||
definition precategory_functor [instance] [reducible] (D C : Precategory)
|
definition precategory_functor [instance] [reducible] (D C : Precategory)
|
||||||
: precategory (functor C D) :=
|
: precategory (functor C D) :=
|
||||||
|
@ -168,7 +168,13 @@ namespace category
|
||||||
|
|
||||||
-- definition Precategory_functor_rev [reducible] (C D : Precategory) : Precategory :=
|
-- definition Precategory_functor_rev [reducible] (C D : Precategory) : Precategory :=
|
||||||
-- Precategory_functor D C
|
-- Precategory_functor D C
|
||||||
|
end
|
||||||
|
namespace ops
|
||||||
|
infixr `^c`:35 := Precategory_functor
|
||||||
|
end ops
|
||||||
|
|
||||||
|
section
|
||||||
|
open iso functor nat_trans
|
||||||
/- we prove that if a natural transformation is pointwise an to_fun, then it is an to_fun -/
|
/- we prove that if a natural transformation is pointwise an to_fun, then it is an to_fun -/
|
||||||
variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) [iso : Π(a : C), is_iso (η a)]
|
variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) [iso : Π(a : C), is_iso (η a)]
|
||||||
include iso
|
include iso
|
||||||
|
@ -199,13 +205,56 @@ namespace category
|
||||||
apply is_hset.elim
|
apply is_hset.elim
|
||||||
end
|
end
|
||||||
|
|
||||||
definition nat_trans_iso.mk : is_iso η :=
|
definition is_iso_nat_trans : is_iso η :=
|
||||||
is_iso.mk (nat_trans_left_inverse η) (nat_trans_right_inverse η)
|
is_iso.mk (nat_trans_left_inverse η) (nat_trans_right_inverse η)
|
||||||
|
|
||||||
end precategory_functor
|
omit iso
|
||||||
|
-- local attribute is_iso_nat_trans [instance]
|
||||||
|
-- definition functor_iso_functor (H : Π(a : C), F a ≅ G a) : F ≅ G := -- is this true?
|
||||||
|
-- iso.mk _
|
||||||
|
end
|
||||||
|
|
||||||
|
section
|
||||||
|
open iso functor category.ops nat_trans iso.iso
|
||||||
|
/- and conversely, if a natural transformation is an iso, it is componentwise an iso -/
|
||||||
|
variables {C D : Precategory} {F G : D ^c C} (η : hom F G) [isoη : is_iso η] (c : C)
|
||||||
|
include isoη
|
||||||
|
definition componentwise_is_iso : is_iso (η c) :=
|
||||||
|
@is_iso.mk _ _ _ _ _ (natural_map η⁻¹ c) (ap010 natural_map ( left_inverse η) c)
|
||||||
|
(ap010 natural_map (right_inverse η) c)
|
||||||
|
|
||||||
|
local attribute componentwise_is_iso [instance]
|
||||||
|
|
||||||
|
definition natural_map_inverse : natural_map η⁻¹ c = (η c)⁻¹ := idp
|
||||||
|
|
||||||
|
definition naturality_iso {c c' : C} (f : c ⟶ c') : G f = η c' ∘ F f ∘ (η c)⁻¹ :=
|
||||||
|
calc
|
||||||
|
G f = (G f ∘ η c) ∘ (η c)⁻¹ : comp_inverse_cancel_right
|
||||||
|
... = (η c' ∘ F f) ∘ (η c)⁻¹ : {naturality η f}
|
||||||
|
... = η c' ∘ F f ∘ (η c)⁻¹ : assoc
|
||||||
|
|
||||||
|
definition naturality_iso' {c c' : C} (f : c ⟶ c') : (η c')⁻¹ ∘ G f ∘ η c = F f :=
|
||||||
|
calc
|
||||||
|
(η c')⁻¹ ∘ G f ∘ η c = (η c')⁻¹ ∘ η c' ∘ F f : {naturality η f}
|
||||||
|
... = F f : inverse_comp_cancel_left
|
||||||
|
|
||||||
|
omit isoη
|
||||||
|
|
||||||
|
definition componentwise_iso (η : F ≅ G) (c : C) : F c ≅ G c :=
|
||||||
|
@iso.mk _ _ _ _ (natural_map (to_hom η) c)
|
||||||
|
(@componentwise_is_iso _ _ _ _ (to_hom η) (struct η) c)
|
||||||
|
|
||||||
|
definition natural_map_hom_of_eq (p : F = G) (c : C)
|
||||||
|
: natural_map (hom_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c) :=
|
||||||
|
eq.rec_on p idp
|
||||||
|
|
||||||
|
definition natural_map_inv_of_eq (p : F = G) (c : C)
|
||||||
|
: natural_map (inv_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c)⁻¹ :=
|
||||||
|
eq.rec_on p idp
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
namespace ops
|
namespace ops
|
||||||
infixr `^c`:35 := Precategory_functor
|
|
||||||
infixr `×f`:30 := product.prod_functor
|
infixr `×f`:30 := product.prod_functor
|
||||||
infixr `ᵒᵖᶠ`:(max+1) := opposite.opposite_functor
|
infixr `ᵒᵖᶠ`:(max+1) := opposite.opposite_functor
|
||||||
end ops
|
end ops
|
||||||
|
|
|
@ -6,11 +6,96 @@ Module: algebra.precategory.functor
|
||||||
Authors: Floris van Doorn, Jakob von Raumer
|
Authors: Floris van Doorn, Jakob von Raumer
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import .basic types.pi
|
import .basic types.pi .iso
|
||||||
|
|
||||||
open function category eq prod equiv is_equiv sigma sigma.ops is_trunc funext
|
open function category eq prod equiv is_equiv sigma sigma.ops is_trunc funext iso
|
||||||
open pi
|
open pi
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
section
|
||||||
|
|
||||||
|
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
||||||
|
|
||||||
|
definition homotopy2 [reducible] (f g : Πa b, C a b) : Type :=
|
||||||
|
Πa b, f a b = g a b
|
||||||
|
|
||||||
|
definition homotopy3 [reducible] (f g : Πa b c, D a b c) : Type :=
|
||||||
|
Πa b c, f a b c = g a b c
|
||||||
|
notation f `∼2`:50 g := homotopy2 f g
|
||||||
|
notation f `∼3`:50 g := homotopy3 f g
|
||||||
|
|
||||||
|
-- definition apD100 {f g : Πa b, C a b} (p : f = g) : f ∼2 g :=
|
||||||
|
-- λa b, eq.rec_on p idp
|
||||||
|
|
||||||
|
definition apD100 {f g : Πa b, C a b} (p : f = g) : f ∼2 g :=
|
||||||
|
λa b, apD10 (apD10 p a) b
|
||||||
|
|
||||||
|
definition apD1000 {f g : Πa b c, D a b c} (p : f = g) : f ∼3 g :=
|
||||||
|
λa b c, apD100 (apD10 p a) b c
|
||||||
|
|
||||||
|
definition eq_of_homotopy2 {f g : Πa b, C a b} (H : f ∼2 g) : f = g :=
|
||||||
|
eq_of_homotopy (λa, eq_of_homotopy (H a))
|
||||||
|
|
||||||
|
definition eq_of_homotopy3 {f g : Πa b c, D a b c} (H : f ∼3 g) : f = g :=
|
||||||
|
eq_of_homotopy (λa, eq_of_homotopy2 (H a))
|
||||||
|
|
||||||
|
definition eq_of_homotopy2_id (f : Πa b, C a b)
|
||||||
|
: eq_of_homotopy2 (λa b, idpath (f a b)) = idpath f :=
|
||||||
|
begin
|
||||||
|
apply concat,
|
||||||
|
{apply (ap (λx, eq_of_homotopy x)), apply eq_of_homotopy, intro a, apply eq_of_homotopy_id},
|
||||||
|
apply eq_of_homotopy_id
|
||||||
|
end
|
||||||
|
|
||||||
|
definition eq_of_homotopy3_id (f : Πa b c, D a b c)
|
||||||
|
: eq_of_homotopy3 (λa b c, idpath (f a b c)) = idpath f :=
|
||||||
|
begin
|
||||||
|
apply concat,
|
||||||
|
{apply (ap (λx, eq_of_homotopy x)), apply eq_of_homotopy, intro a, apply eq_of_homotopy2_id},
|
||||||
|
apply eq_of_homotopy_id
|
||||||
|
end
|
||||||
|
|
||||||
|
--TODO: put in namespace funext
|
||||||
|
definition is_equiv_apD100 [instance] (f g : Πa b, C a b) : is_equiv (@apD100 A B C f g) :=
|
||||||
|
adjointify _
|
||||||
|
eq_of_homotopy2
|
||||||
|
begin
|
||||||
|
intro H, esimp {apD100,eq_of_homotopy2, function.compose},
|
||||||
|
apply eq_of_homotopy, intro a,
|
||||||
|
apply concat, apply (ap (λx, @apD10 _ (λb : B a, _) _ _ (x a))), apply (retr apD10),
|
||||||
|
--TODO: remove implicit argument after #469 is closed
|
||||||
|
apply (retr apD10)
|
||||||
|
end
|
||||||
|
begin
|
||||||
|
intro p, cases p, apply eq_of_homotopy2_id
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_equiv_apD1000 [instance] (f g : Πa b c, D a b c) : is_equiv (@apD1000 A B C D f g) :=
|
||||||
|
adjointify _
|
||||||
|
eq_of_homotopy3
|
||||||
|
begin
|
||||||
|
intro H, apply eq_of_homotopy, intro a,
|
||||||
|
apply concat, {apply (ap (λx, @apD100 _ _ (λ(b : B a)(c : C a b), _) _ _ (x a))), apply (retr apD10)},
|
||||||
|
--TODO: remove implicit argument after #469 is closed
|
||||||
|
apply (@retr _ _ apD100 !is_equiv_apD100) --is explicit argument needed here?
|
||||||
|
end
|
||||||
|
begin
|
||||||
|
intro p, cases p, apply eq_of_homotopy3_id
|
||||||
|
end
|
||||||
|
|
||||||
|
protected definition homotopy2.rec_on {f g : Πa b, C a b} {P : (f ∼2 g) → Type}
|
||||||
|
(p : f ∼2 g) (H : Π(q : f = g), P (apD100 q)) : P p :=
|
||||||
|
retr apD100 p ▹ H (eq_of_homotopy2 p)
|
||||||
|
|
||||||
|
protected definition homotopy3.rec_on {f g : Πa b c, D a b c} {P : (f ∼3 g) → Type}
|
||||||
|
(p : f ∼3 g) (H : Π(q : f = g), P (apD1000 q)) : P p :=
|
||||||
|
retr apD1000 p ▹ H (eq_of_homotopy3 p)
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
structure functor (C D : Precategory) : Type :=
|
structure functor (C D : Precategory) : Type :=
|
||||||
(to_fun_ob : C → D)
|
(to_fun_ob : C → D)
|
||||||
(to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b))
|
(to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b))
|
||||||
|
@ -53,13 +138,14 @@ namespace functor
|
||||||
apD01111 functor.mk pF pH !is_hprop.elim !is_hprop.elim
|
apD01111 functor.mk pF pH !is_hprop.elim !is_hprop.elim
|
||||||
|
|
||||||
definition functor_eq_mk' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
|
definition functor_eq_mk' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
|
||||||
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
|
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) (pF : F₁ ∼ F₂)
|
||||||
(pF : F₁ ∼ F₂) (pH : Π(a b : C) (f : hom a b), eq_of_homotopy pF ▹ (H₁ a b f) = H₂ a b f)
|
(pH : Π(a b : C) (f : hom a b), hom_of_eq (pF b) ∘ H₁ a b f ∘ inv_of_eq (pF a) = H₂ a b f)
|
||||||
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
|
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
|
||||||
functor_eq_mk'' id₁ id₂ comp₁ comp₂ (eq_of_homotopy pF)
|
functor_eq_mk'' id₁ id₂ comp₁ comp₂ (eq_of_homotopy pF)
|
||||||
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf,
|
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf,
|
||||||
begin
|
begin
|
||||||
apply concat, rotate_left 1, exact (pH c c' f),
|
apply concat, rotate_left 1, exact (pH c c' f),
|
||||||
|
apply concat, rotate_left 1, apply transport_hom,
|
||||||
apply concat, rotate_left 1,
|
apply concat, rotate_left 1,
|
||||||
exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c c') f),
|
exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c c') f),
|
||||||
apply (apD10' f),
|
apply (apD10' f),
|
||||||
|
@ -79,8 +165,7 @@ namespace functor
|
||||||
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (pH c c'))))
|
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (pH c c'))))
|
||||||
|
|
||||||
definition functor_eq_mk {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ ∼ to_fun_ob F₂),
|
definition functor_eq_mk {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ ∼ to_fun_ob F₂),
|
||||||
(Π(a b : C) (f : hom a b), transport (λF, hom (F a) (F b)) (eq_of_homotopy p) (F₁ f) = F₂ f)
|
(Π(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a) = F₂ f) → F₁ = F₂ :=
|
||||||
→ F₁ = F₂ :=
|
|
||||||
functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'))
|
functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'))
|
||||||
|
|
||||||
protected definition assoc {A B C D : Precategory} (H : functor C D) (G : functor B C) (F : functor A B) :
|
protected definition assoc {A B C D : Precategory} (H : functor C D) (G : functor B C) (F : functor A B) :
|
||||||
|
@ -136,8 +221,55 @@ namespace functor
|
||||||
apply is_trunc_eq, apply is_trunc_succ, apply !homH},
|
apply is_trunc_eq, apply is_trunc_succ, apply !homH},
|
||||||
end
|
end
|
||||||
|
|
||||||
end functor
|
--set_option pp.universes true
|
||||||
|
-- set_option pp.notation false
|
||||||
|
-- set_option pp.implicit true
|
||||||
|
definition functor_eq2' {obF obF' : C → D} {homF homF' idF idF' compF compF'}
|
||||||
|
(p q : functor.mk obF homF idF compF = functor.mk obF' homF' idF' compF') (r : obF = obF')
|
||||||
|
: p = q :=
|
||||||
|
begin
|
||||||
|
cases r,
|
||||||
|
end
|
||||||
|
|
||||||
|
definition functor_eq2 {F₁ F₂ : C ⇒ D} (p q : F₁ = F₂) (r : ap010 to_fun_ob p ∼ ap010 to_fun_ob q)
|
||||||
|
: p = q :=
|
||||||
|
begin
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
-- definition ap010_functor_eq_mk' {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ = to_fun_ob F₂)
|
||||||
|
-- (q : p ▹ F₁ = F₂) (c : C) :
|
||||||
|
-- ap to_fun_ob (functor_eq_mk (apD10 p) (λa b f, _)) = p := sorry
|
||||||
|
-- begin
|
||||||
|
-- cases F₂, revert q, apply (homotopy.rec_on p), clear p, esimp, intros (p, q),
|
||||||
|
-- cases p, clears (e_1, e_2),
|
||||||
|
-- end
|
||||||
|
|
||||||
|
-- TODO: remove sorry
|
||||||
|
-- maybe some lemma "recursion on homotopy (and equiv)" could be useful
|
||||||
|
definition ap010_functor_eq_mk {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ ∼ to_fun_ob F₂)
|
||||||
|
(q : (λ(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a)) ∼3 to_fun_hom F₂) (c : C) :
|
||||||
|
ap010 to_fun_ob (functor_eq_mk p q) c = p c :=
|
||||||
|
begin
|
||||||
|
cases F₂, revert q, apply (homotopy.rec_on p), clear p, esimp, intros (p, q),
|
||||||
|
apply sorry,
|
||||||
|
--cases p, clears (e_1, e_2, p),
|
||||||
|
|
||||||
|
--exact (homotopy3.rec_on q sorry)
|
||||||
|
-- apply (homotopy3.rec_on q),
|
||||||
|
end
|
||||||
|
|
||||||
|
-- definition ap010_functor_eq_mk {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ ∼ to_fun_ob F₂)
|
||||||
|
-- (q : Π(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a) = F₂ f) (c : C) :
|
||||||
|
-- ap010 to_fun_ob (functor_eq_mk p q) c = p c :=
|
||||||
|
-- begin
|
||||||
|
-- cases F₂, revert q, apply (homotopy.rec_on p), clear p, esimp, intros (p, q),
|
||||||
|
-- cases p, clears (e_1, e_2, p),
|
||||||
|
-- apply (homotopy3.rec_on q),
|
||||||
|
-- end
|
||||||
|
-- ⊢ ap010 to_fun_ob (functor_eq_mk rfl q) c = rfl
|
||||||
|
|
||||||
|
end functor
|
||||||
|
|
||||||
namespace category
|
namespace category
|
||||||
open functor
|
open functor
|
||||||
|
|
|
@ -191,7 +191,37 @@ namespace iso
|
||||||
end
|
end
|
||||||
|
|
||||||
definition iso_of_eq (p : a = b) : a ≅ b :=
|
definition iso_of_eq (p : a = b) : a ≅ b :=
|
||||||
eq.rec_on p (iso.mk id)
|
eq.rec_on p (iso.refl a)
|
||||||
|
|
||||||
|
definition hom_of_eq (p : a = b) : a ⟶ b :=
|
||||||
|
iso.to_hom (iso_of_eq p)
|
||||||
|
|
||||||
|
definition inv_of_eq (p : a = b) : b ⟶ a :=
|
||||||
|
iso.to_inv (iso_of_eq p)
|
||||||
|
|
||||||
|
definition iso_of_eq_inv (p : a = b) : iso_of_eq p⁻¹ = iso.symm (iso_of_eq p) :=
|
||||||
|
eq.rec_on p idp
|
||||||
|
|
||||||
|
definition iso_of_eq_con (p : a = b) (q : b = c)
|
||||||
|
: iso_of_eq (p ⬝ q) = iso.trans (iso_of_eq p) (iso_of_eq q) :=
|
||||||
|
eq.rec_on q (eq.rec_on p (iso.eq_mk !id_comp⁻¹))
|
||||||
|
|
||||||
|
|
||||||
|
section
|
||||||
|
open funext
|
||||||
|
variables {X : Type} {x y : X} {F G : X → ob}
|
||||||
|
definition transport_hom_of_eq (p : F = G) (f : hom (F x) (F y))
|
||||||
|
: p ▹ f = hom_of_eq (apD10 p y) ∘ f ∘ inv_of_eq (apD10 p x) :=
|
||||||
|
eq.rec_on p !id_leftright⁻¹
|
||||||
|
|
||||||
|
definition transport_hom (p : F ∼ G) (f : hom (F x) (F y))
|
||||||
|
: eq_of_homotopy p ▹ f = hom_of_eq (p y) ∘ f ∘ inv_of_eq (p x) :=
|
||||||
|
calc
|
||||||
|
eq_of_homotopy p ▹ f =
|
||||||
|
hom_of_eq (apD10 (eq_of_homotopy p) y) ∘ f ∘ inv_of_eq (apD10 (eq_of_homotopy p) x)
|
||||||
|
: transport_hom_of_eq
|
||||||
|
... = hom_of_eq (p y) ∘ f ∘ inv_of_eq (p x) : {retr apD10 p}
|
||||||
|
end
|
||||||
|
|
||||||
structure mono [class] (f : a ⟶ b) :=
|
structure mono [class] (f : a ⟶ b) :=
|
||||||
(elim : ∀c (g h : hom c a), f ∘ g = f ∘ h → g = h)
|
(elim : ∀c (g h : hom c a), f ∘ g = f ∘ h → g = h)
|
||||||
|
|
|
@ -9,7 +9,7 @@ Authors: Floris van Doorn
|
||||||
--note: modify definition in category.set
|
--note: modify definition in category.set
|
||||||
import algebra.category.constructions .iso
|
import algebra.category.constructions .iso
|
||||||
|
|
||||||
open category eq category.ops functor prod.ops is_trunc
|
open category eq category.ops functor prod.ops is_trunc iso
|
||||||
|
|
||||||
set_option pp.beta true
|
set_option pp.beta true
|
||||||
namespace yoneda
|
namespace yoneda
|
||||||
|
@ -67,7 +67,7 @@ namespace functor
|
||||||
|
|
||||||
local abbreviation Fhom := @functor_curry_hom
|
local abbreviation Fhom := @functor_curry_hom
|
||||||
|
|
||||||
definition functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) :
|
theorem functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) :
|
||||||
(Fhom F f) d = to_fun_hom F (f, id) := idp
|
(Fhom F f) d = to_fun_hom F (f, id) := idp
|
||||||
|
|
||||||
theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
|
theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
|
||||||
|
@ -125,84 +125,88 @@ namespace functor
|
||||||
functor.mk (functor_uncurry_ob G)
|
functor.mk (functor_uncurry_ob G)
|
||||||
(functor_uncurry_hom G)
|
(functor_uncurry_hom G)
|
||||||
(functor_uncurry_id G)
|
(functor_uncurry_id G)
|
||||||
(functor_uncurry_comp G)
|
|
||||||
-- open pi
|
|
||||||
-- definition functor_eq_mk'1 {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
|
|
||||||
-- {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
|
|
||||||
-- (pF : F₁ = F₂) (pH : Π(a b : C) (f : hom a b), pF ▹ (H₁ a b f) = H₂ a b f)
|
|
||||||
-- : functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
|
|
||||||
-- functor_eq_mk'' id₁ id₂ comp₁ comp₂ pF
|
|
||||||
-- (eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf,
|
|
||||||
-- begin
|
|
||||||
-- apply concat, rotate_left 1, exact (pH c c' f),
|
|
||||||
-- apply concat, rotate_left 1,
|
|
||||||
-- exact (pi_transport_constant pF (H₁ c c') f),
|
|
||||||
-- apply (apD10' f),
|
|
||||||
-- apply concat, rotate_left 1,
|
|
||||||
-- exact (pi_transport_constant pF (H₁ c) c'),
|
|
||||||
-- apply (apD10' c'),
|
|
||||||
-- apply concat, rotate_left 1,
|
|
||||||
-- exact (pi_transport_constant pF H₁ c),
|
|
||||||
-- apply idp
|
|
||||||
-- end))))
|
|
||||||
|
|
||||||
-- definition functor_eq_mk1 {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ = to_fun_ob F₂),
|
theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
|
||||||
-- (Π(a b : C) (f : hom a b), transport (λF, hom (F a) (F b)) p (F₁ f) = F₂ f)
|
|
||||||
-- → F₁ = F₂ :=
|
|
||||||
-- functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'1))
|
|
||||||
|
|
||||||
--set_option pp.notation false
|
|
||||||
definition functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
|
|
||||||
functor_eq_mk (λp, ap (to_fun_ob F) !prod.eta)
|
functor_eq_mk (λp, ap (to_fun_ob F) !prod.eta)
|
||||||
begin
|
begin
|
||||||
intros (cd, cd', fg),
|
intros (cd, cd', fg),
|
||||||
cases cd with (c,d), cases cd' with (c',d'), cases fg with (f,g),
|
cases cd with (c,d), cases cd' with (c',d'), cases fg with (f,g),
|
||||||
have H : (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
|
apply concat, apply id_leftright,
|
||||||
|
show (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
|
||||||
from calc
|
from calc
|
||||||
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp
|
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp
|
||||||
... = F (id ∘ f, g ∘ id) : respect_comp F (id,g) (f,id)
|
... = F (id ∘ f, g ∘ id) : respect_comp F (id,g) (f,id)
|
||||||
... = F (f, g ∘ id) : by rewrite id_left
|
... = F (f, g ∘ id) : by rewrite id_left
|
||||||
... = F (f,g) : by rewrite id_right,
|
... = F (f,g) : by rewrite id_right,
|
||||||
rewrite H,
|
|
||||||
apply sorry
|
|
||||||
end
|
end
|
||||||
--set_option pp.implicit true
|
|
||||||
definition functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
|
definition functor_curry_functor_uncurry_ob (c : C)
|
||||||
|
: functor_curry (functor_uncurry G) c = G c :=
|
||||||
begin
|
begin
|
||||||
fapply functor_eq_mk,
|
|
||||||
{intro c,
|
|
||||||
fapply functor_eq_mk,
|
fapply functor_eq_mk,
|
||||||
{intro d, apply idp},
|
{intro d, apply idp},
|
||||||
{intros (d, d', g),
|
{intros (d, d', g),
|
||||||
have H : to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g,
|
apply concat, apply id_leftright,
|
||||||
|
show to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g,
|
||||||
from calc
|
from calc
|
||||||
to_fun_hom (functor_curry (functor_uncurry G) c) g
|
to_fun_hom (functor_curry (functor_uncurry G) c) g
|
||||||
= to_fun_hom (G c) g ∘ natural_map (to_fun_hom G (ID c)) d : by esimp
|
= to_fun_hom (G c) g ∘ natural_map (to_fun_hom G (ID c)) d : by esimp
|
||||||
... = to_fun_hom (G c) g ∘ natural_map (ID (G c)) d : by rewrite respect_id
|
... = to_fun_hom (G c) g ∘ natural_map (ID (G c)) d
|
||||||
... = to_fun_hom (G c) g : id_right,
|
: by rewrite respect_id
|
||||||
rewrite H,
|
... = to_fun_hom (G c) g : id_right}
|
||||||
-- esimp {idp},
|
|
||||||
apply sorry
|
|
||||||
}
|
|
||||||
},
|
|
||||||
apply sorry
|
|
||||||
end
|
end
|
||||||
|
|
||||||
definition equiv_functor_curry : (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
|
theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
|
||||||
|
begin
|
||||||
|
fapply functor_eq_mk, exact (functor_curry_functor_uncurry_ob G),
|
||||||
|
intros (c, c', f),
|
||||||
|
fapply nat_trans_eq_mk,
|
||||||
|
intro d,
|
||||||
|
apply concat,
|
||||||
|
{apply (ap (λx, x ∘ _)),
|
||||||
|
apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq_mk},
|
||||||
|
apply concat,
|
||||||
|
{apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)),
|
||||||
|
apply concat, apply natural_map_inv_of_eq,
|
||||||
|
apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq_mk},
|
||||||
|
apply concat, apply id_leftright,
|
||||||
|
apply concat, apply (ap (λx, x ∘ _)), apply respect_id,
|
||||||
|
apply id_left
|
||||||
|
end
|
||||||
|
|
||||||
|
definition prod_functor_equiv_functor_functor (C D E : Precategory)
|
||||||
|
: (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
|
||||||
equiv.MK functor_curry
|
equiv.MK functor_curry
|
||||||
functor_uncurry
|
functor_uncurry
|
||||||
functor_curry_functor_uncurry
|
functor_curry_functor_uncurry
|
||||||
functor_uncurry_functor_curry
|
functor_uncurry_functor_curry
|
||||||
|
|
||||||
|
|
||||||
definition functor_prod_flip_ob : C ×c D ⇒ D ×c C :=
|
definition functor_prod_flip (C D : Precategory) : C ×c D ⇒ D ×c C :=
|
||||||
functor.mk sorry sorry sorry sorry
|
functor.mk (λp, (p.2, p.1))
|
||||||
|
(λp p' h, (h.2, h.1))
|
||||||
|
(λp, idp)
|
||||||
definition contravariant_yoneda_embedding : Cᵒᵖ ⇒ set ^c C :=
|
(λp p' p'' h' h, idp)
|
||||||
functor_curry !yoneda.hom_functor
|
|
||||||
|
|
||||||
|
definition functor_prod_flip_functor_prod_flip (C D : Precategory)
|
||||||
|
: functor_prod_flip D C ∘f (functor_prod_flip C D) = functor.id :=
|
||||||
|
begin
|
||||||
|
fapply functor_eq_mk, {intro p, apply prod.eta},
|
||||||
|
intros (p, p', h), cases p with (c, d), cases p' with (c', d'),
|
||||||
|
apply id_leftright,
|
||||||
|
end
|
||||||
end functor
|
end functor
|
||||||
|
open functor
|
||||||
|
|
||||||
|
namespace yoneda
|
||||||
|
-- or should this be defined as "yoneda_embedding Cᵒᵖ"?
|
||||||
|
definition contravariant_yoneda_embedding (C : Precategory) : Cᵒᵖ ⇒ set ^c C :=
|
||||||
|
functor_curry !hom_functor
|
||||||
|
|
||||||
|
definition yoneda_embedding (C : Precategory) : C ⇒ set ^c Cᵒᵖ :=
|
||||||
|
functor_curry (!hom_functor ∘f !functor_prod_flip)
|
||||||
|
|
||||||
|
end yoneda
|
||||||
|
|
||||||
-- Coq uses unit/counit definitions as basic
|
-- Coq uses unit/counit definitions as basic
|
||||||
|
|
||||||
|
|
|
@ -149,13 +149,14 @@ equiv.mk apD10 _
|
||||||
definition eq_of_homotopy {A : Type} {P : A → Type} {f g : Π x, P x} : f ∼ g → f = g :=
|
definition eq_of_homotopy {A : Type} {P : A → Type} {f g : Π x, P x} : f ∼ g → f = g :=
|
||||||
(@apD10 A P f g)⁻¹
|
(@apD10 A P f g)⁻¹
|
||||||
|
|
||||||
|
--rename to eq_of_homotopy_idp
|
||||||
definition eq_of_homotopy_id {A : Type} {P : A → Type} (f : Π x, P x)
|
definition eq_of_homotopy_id {A : Type} {P : A → Type} (f : Π x, P x)
|
||||||
: eq_of_homotopy (λx : A, idpath (f x)) = idpath f :=
|
: eq_of_homotopy (λx : A, idpath (f x)) = idpath f :=
|
||||||
is_equiv.sect apD10 idp
|
is_equiv.sect apD10 idp
|
||||||
|
|
||||||
definition eq_of_homotopy2 {A B : Type} {P : A → B → Type}
|
|
||||||
(f g : Πx y, P x y) : (Πx y, f x y = g x y) → f = g :=
|
|
||||||
λ E, eq_of_homotopy (λx, eq_of_homotopy (E x))
|
|
||||||
|
|
||||||
definition naive_funext_of_ua : naive_funext :=
|
definition naive_funext_of_ua : naive_funext :=
|
||||||
λ A P f g h, eq_of_homotopy h
|
λ A P f g h, eq_of_homotopy h
|
||||||
|
|
||||||
|
protected definition homotopy.rec_on {A : Type} {B : A → Type} {f g : Πa, B a} {P : (f ∼ g) → Type}
|
||||||
|
(p : f ∼ g) (H : Π(q : f = g), P (apD10 q)) : P p :=
|
||||||
|
retr apD10 p ▹ H (eq_of_homotopy p)
|
||||||
|
|
|
@ -44,4 +44,8 @@ namespace equiv
|
||||||
-- We can use this for calculation evironments
|
-- We can use this for calculation evironments
|
||||||
calc_subst transport_of_equiv
|
calc_subst transport_of_equiv
|
||||||
|
|
||||||
|
definition rec_on_of_equiv_of_eq {A B : Type} {P : (A ≃ B) → Type}
|
||||||
|
(p : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q)) : P p :=
|
||||||
|
retr equiv_of_eq p ▹ H (ua p)
|
||||||
|
|
||||||
end equiv
|
end equiv
|
||||||
|
|
|
@ -660,6 +660,9 @@ namespace eq
|
||||||
definition ap01111 (f : A → B → C → D → E) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d')
|
definition ap01111 (f : A → B → C → D → E) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d')
|
||||||
: f a b c d = f a' b' c' d' :=
|
: f a b c d = f a' b' c' d' :=
|
||||||
eq.rec_on Ha (ap0111 (f a) Hb Hc Hd)
|
eq.rec_on Ha (ap0111 (f a) Hb Hc Hd)
|
||||||
|
|
||||||
|
definition ap010 {C : B → Type} (f : A → Π(b : B), C b) (Ha : a = a') (b : B) : f a b = f a' b :=
|
||||||
|
eq.rec_on Ha idp
|
||||||
end
|
end
|
||||||
section
|
section
|
||||||
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
||||||
|
|
Loading…
Reference in a new issue