feat(hott): more cleanup of HoTT library
remove funext class, remove a couple of sorry's, add characterization of equality in trunctypes, use Jeremy's format for headers everywhere in the HoTT library, continue working on Yoneda embedding
This commit is contained in:
parent
c091acc55b
commit
f513538631
43 changed files with 488 additions and 413 deletions
|
@ -1,33 +1,45 @@
|
|||
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Jakob von Raumer
|
||||
/-
|
||||
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
import ..precategory.basic ..precategory.morphism ..precategory.iso
|
||||
Module: algebra.category.basic
|
||||
Author: Jakob von Raumer
|
||||
-/
|
||||
|
||||
open precategory morphism is_equiv eq is_trunc nat sigma sigma.ops
|
||||
import algebra.precategory.iso
|
||||
|
||||
-- A category is a precategory extended by a witness,
|
||||
-- that the function assigning to each isomorphism a path,
|
||||
open morphism is_equiv eq is_trunc
|
||||
|
||||
-- A category is a precategory extended by a witness
|
||||
-- that the function from paths to isomorphisms,
|
||||
-- is an equivalecnce.
|
||||
structure category [class] (ob : Type) extends (precategory ob) :=
|
||||
(iso_of_path_equiv : Π {a b : ob}, is_equiv (@iso_of_path ob (precategory.mk hom _ comp ID assoc id_left id_right) a b))
|
||||
|
||||
attribute category [multiple-instances]
|
||||
|
||||
namespace category
|
||||
variables {ob : Type} {C : category ob} {a b : ob}
|
||||
|
||||
structure category [class] (ob : Type) extends parent : precategory ob :=
|
||||
(iso_of_path_equiv : Π (a b : ob), is_equiv (@iso_of_path ob parent a b))
|
||||
|
||||
attribute category [multiple-instances]
|
||||
|
||||
abbreviation iso_of_path_equiv := @category.iso_of_path_equiv
|
||||
|
||||
definition category.mk' [reducible] (ob : Type) (C : precategory ob)
|
||||
(H : Π (a b : ob), is_equiv (@iso_of_path ob C a b)) : category ob :=
|
||||
precategory.rec_on C category.mk H
|
||||
|
||||
section basic
|
||||
variables {ob : Type} [C : category ob]
|
||||
include C
|
||||
|
||||
-- Make iso_of_path_equiv a class instance
|
||||
-- TODO: Unsafe class instance?
|
||||
attribute iso_of_path_equiv [instance]
|
||||
|
||||
definition path_of_iso {a b : ob} : a ≅ b → a = b :=
|
||||
definition path_of_iso (a b : ob) : a ≅ b → a = b :=
|
||||
iso_of_path⁻¹
|
||||
|
||||
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
|
||||
|
||||
definition ob_1_type : is_trunc (succ nat.zero) ob :=
|
||||
definition ob_1_type : is_trunc 1 ob :=
|
||||
begin
|
||||
apply is_trunc_succ_intro, intros (a, b),
|
||||
fapply is_trunc_is_equiv_closed,
|
||||
|
@ -35,25 +47,27 @@ namespace category
|
|||
apply is_equiv_inv,
|
||||
apply is_hset_iso,
|
||||
end
|
||||
end basic
|
||||
|
||||
-- Bundled version of categories
|
||||
-- we don't use Category.carrier explicitly, but rather use Precategory.carrier (to_Precategory C)
|
||||
structure Category : Type :=
|
||||
(carrier : Type)
|
||||
(struct : category carrier)
|
||||
|
||||
attribute Category.struct [instance] [coercion]
|
||||
-- definition objects [reducible] := Category.objects
|
||||
-- definition category_instance [instance] [coercion] [reducible] := Category.category_instance
|
||||
|
||||
definition Category.to_Precategory [coercion] [reducible] (C : Category) : Precategory :=
|
||||
Precategory.mk (Category.carrier C) C
|
||||
|
||||
definition category.Mk [reducible] := Category.mk
|
||||
definition category.MK [reducible] (C : Precategory)
|
||||
(H : Π (a b : C), is_equiv (@iso_of_path C C a b)) : Category :=
|
||||
Category.mk C (category.mk' C C H)
|
||||
|
||||
definition Category.eta (C : Category) : Category.mk C C = C :=
|
||||
Category.rec (λob c, idp) C
|
||||
|
||||
end category
|
||||
|
||||
-- Bundled version of categories
|
||||
|
||||
structure Category : Type :=
|
||||
(objects : Type)
|
||||
(category_instance : category objects)
|
||||
|
||||
namespace category
|
||||
definition Mk {ob} (C) : Category := Category.mk ob C
|
||||
--definition MK (a b c d e f g h i) : Category := Category.mk a (category.mk b c d e f g h i)
|
||||
|
||||
definition objects [coercion] [reducible] := Category.objects
|
||||
definition category_instance [instance] [coercion] [reducible] := Category.category_instance
|
||||
|
||||
end category
|
||||
|
||||
open category
|
||||
|
||||
protected definition Category.eta (C : Category) : Category.mk C C = C :=
|
||||
Category.rec (λob c, idp) C
|
||||
|
|
33
hott/algebra/category/constructions.hlean
Normal file
33
hott/algebra/category/constructions.hlean
Normal file
|
@ -0,0 +1,33 @@
|
|||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.category.constructions
|
||||
Authors: Floris van Doorn
|
||||
-/
|
||||
|
||||
import .basic algebra.precategory.constructions
|
||||
|
||||
open eq prod eq eq.ops equiv is_trunc funext pi category.ops morphism category
|
||||
|
||||
namespace category
|
||||
|
||||
section hset
|
||||
definition is_category_hset (a b : Precategory_hset) : is_equiv (@iso_of_path _ _ a b) :=
|
||||
sorry
|
||||
|
||||
definition category_hset [reducible] [instance] : category hset :=
|
||||
category.mk' hset precategory_hset is_category_hset
|
||||
|
||||
definition Category_hset [reducible] : Category :=
|
||||
Category.mk hset category_hset
|
||||
|
||||
--RENAME AND CLEANUP
|
||||
definition set_category_equiv_iso (a b : Category_hset) : (a ≅ b) = (a ≃ b) := sorry
|
||||
|
||||
end hset
|
||||
namespace ops
|
||||
abbreviation set := Category_hset
|
||||
end ops
|
||||
|
||||
end category
|
|
@ -1,70 +0,0 @@
|
|||
-- Copyright (c) 2015 Jakob von Raumer. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Jakob von Raumer
|
||||
-- Category of sets
|
||||
|
||||
import .basic types.pi types.trunc
|
||||
|
||||
open is_trunc sigma sigma.ops pi function eq morphism precategory
|
||||
open equiv
|
||||
|
||||
namespace precategory
|
||||
|
||||
universe variable l
|
||||
|
||||
definition set_precategory : precategory.{l+1 l} (Σ (A : Type.{l}), is_hset A) :=
|
||||
begin
|
||||
fapply precategory.mk.{l+1 l},
|
||||
intros (a, a_1), apply (a.1 → a_1.1),
|
||||
intros, apply is_trunc_pi, intros, apply b.2,
|
||||
intros, intro x, exact (a_1 (a_2 x)),
|
||||
intros, exact (λ (x : a.1), x),
|
||||
intros, apply eq_of_homotopy, intro x, apply idp,
|
||||
intros, apply eq_of_homotopy, intro x, apply idp,
|
||||
intros, apply eq_of_homotopy, intro x, apply idp,
|
||||
end
|
||||
|
||||
end precategory
|
||||
|
||||
namespace category
|
||||
|
||||
universe variable l
|
||||
local attribute precategory.set_precategory.{l+1 l} [instance]
|
||||
|
||||
definition set_category_equiv_iso (a b : (Σ (A : Type.{l}), is_hset A))
|
||||
: (a ≅ b) = (a.1 ≃ b.1) :=
|
||||
/-begin
|
||||
apply ua, fapply equiv.mk,
|
||||
intro H,
|
||||
apply (isomorphic.rec_on H), intros (H1, H2),
|
||||
apply (is_iso.rec_on H2), intros (H3, H4, H5),
|
||||
fapply equiv.mk,
|
||||
apply (isomorphic.rec_on H), intros (H1, H2),
|
||||
exact H1,
|
||||
fapply is_equiv.adjointify, exact H3,
|
||||
exact sorry,
|
||||
exact sorry,
|
||||
end-/ sorry
|
||||
|
||||
definition set_category : category.{l+1 l} (Σ (A : Type.{l}), is_hset A) :=
|
||||
/-begin
|
||||
assert (C : precategory.{l+1 l} (Σ (A : Type.{l}), is_hset A)),
|
||||
apply precategory.set_precategory,
|
||||
apply category.mk,
|
||||
assert (p : (λ A B p, (set_category_equiv_iso A B) ▹ iso_of_path p) = (λ A B p, @equiv_of_eq A.1 B.1 p)),
|
||||
apply is_equiv.adjointify,
|
||||
intros,
|
||||
apply (isomorphic.rec_on a_1), intros (iso', is_iso'),
|
||||
apply (is_iso.rec_on is_iso'), intros (f', f'sect, f'retr),
|
||||
fapply sigma_eq,
|
||||
apply ua, fapply equiv.mk, exact iso',
|
||||
fapply is_equiv.adjointify,
|
||||
exact f',
|
||||
intros, apply (f'retr ▹ _),
|
||||
intros, apply (f'sect ▹ _),
|
||||
apply (@is_hprop.elim),
|
||||
apply is_hprop_is_trunc,
|
||||
intros,
|
||||
end -/ sorry
|
||||
|
||||
end category
|
|
@ -1,26 +1,32 @@
|
|||
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Jakob von Raumer
|
||||
-- Ported from Coq HoTT
|
||||
import .precategory.basic .precategory.morphism .group types.pi
|
||||
/-
|
||||
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
open eq function prod sigma pi is_trunc morphism nat path_algebra unit prod sigma.ops
|
||||
Module: algebra.groupoid
|
||||
Author: Jakob von Raumer
|
||||
|
||||
structure foo (A : Type) := (bsp : A)
|
||||
Ported from Coq HoTT
|
||||
-/
|
||||
|
||||
structure groupoid [class] (ob : Type) extends parent : precategory ob :=
|
||||
(all_iso : Π ⦃a b : ob⦄ (f : hom a b),
|
||||
@is_iso ob parent a b f)
|
||||
import .precategory.morphism .group
|
||||
|
||||
namespace groupoid
|
||||
open eq is_trunc morphism category path_algebra nat unit
|
||||
|
||||
attribute all_iso [instance]
|
||||
namespace category
|
||||
|
||||
universe variable l
|
||||
open precategory
|
||||
definition groupoid_of_1_type (A : Type.{l})
|
||||
(H : is_trunc (nat.zero .+1) A) : groupoid.{l l} A :=
|
||||
groupoid.mk
|
||||
structure groupoid [class] (ob : Type) extends parent : precategory ob :=
|
||||
(all_iso : Π ⦃a b : ob⦄ (f : hom a b), @is_iso ob parent a b f)
|
||||
|
||||
abbreviation all_iso := @groupoid.all_iso
|
||||
attribute groupoid.all_iso [instance]
|
||||
|
||||
definition groupoid.mk' [reducible] (ob : Type) (C : precategory ob)
|
||||
(H : Π (a b : ob) (f : a ⟶ b), is_iso f) : groupoid ob :=
|
||||
precategory.rec_on C groupoid.mk H
|
||||
|
||||
definition groupoid_of_1_type.{l} (A : Type.{l})
|
||||
[H : is_trunc (succ zero) A] : groupoid.{l l} A :=
|
||||
groupoid.mk
|
||||
(λ (a b : A), a = b)
|
||||
(λ (a b : A), have ish : is_hset (a = b), from is_trunc_eq nat.zero a b, ish)
|
||||
(λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p)
|
||||
|
@ -31,10 +37,10 @@ groupoid.mk
|
|||
(λ (a b : A) (p : a = b), @is_iso.mk A _ a b p (p⁻¹)
|
||||
!con.left_inv !con.right_inv)
|
||||
|
||||
-- A groupoid with a contractible carrier is a group
|
||||
definition group_of_is_contr_groupoid {ob : Type} (H : is_contr ob)
|
||||
(G : groupoid ob) : group (hom (center ob) (center ob)) :=
|
||||
begin
|
||||
-- A groupoid with a contractible carrier is a group
|
||||
definition group_of_is_contr_groupoid {ob : Type} [H : is_contr ob]
|
||||
[G : groupoid ob] : group (hom (center ob) (center ob)) :=
|
||||
begin
|
||||
fapply group.mk,
|
||||
intros (f, g), apply (comp f g),
|
||||
apply homH,
|
||||
|
@ -44,10 +50,10 @@ begin
|
|||
intro f, apply id_right,
|
||||
intro f, exact (morphism.inverse f),
|
||||
intro f, exact (morphism.inverse_compose f),
|
||||
end
|
||||
end
|
||||
|
||||
definition group_of_unit_groupoid (G : groupoid unit) : group (hom ⋆ ⋆) :=
|
||||
begin
|
||||
definition group_of_unit_groupoid [G : groupoid unit] : group (hom ⋆ ⋆) :=
|
||||
begin
|
||||
fapply group.mk,
|
||||
intros (f, g), apply (comp f g),
|
||||
apply homH,
|
||||
|
@ -57,11 +63,11 @@ begin
|
|||
intro f, apply id_right,
|
||||
intro f, exact (morphism.inverse f),
|
||||
intro f, exact (morphism.inverse_compose f),
|
||||
end
|
||||
end
|
||||
|
||||
-- Conversely we can turn each group into a groupoid on the unit type
|
||||
definition of_group (A : Type.{l}) [G : group A] : groupoid.{l l} unit :=
|
||||
begin
|
||||
-- Conversely we can turn each group into a groupoid on the unit type
|
||||
definition of_group.{l} (A : Type.{l}) [G : group A] : groupoid.{l l} unit :=
|
||||
begin
|
||||
fapply groupoid.mk,
|
||||
intros, exact A,
|
||||
intros, apply (@group.carrier_hset A G),
|
||||
|
@ -73,11 +79,11 @@ begin
|
|||
intros, apply is_iso.mk,
|
||||
apply mul_left_inv,
|
||||
apply mul_right_inv,
|
||||
end
|
||||
end
|
||||
|
||||
protected definition hom_group {A : Type} [G : groupoid A] (a : A) :
|
||||
protected definition hom_group {A : Type} [G : groupoid A] (a : A) :
|
||||
group (hom a a) :=
|
||||
begin
|
||||
begin
|
||||
fapply group.mk,
|
||||
intros (f, g), apply (comp f g),
|
||||
apply homH,
|
||||
|
@ -87,6 +93,27 @@ begin
|
|||
intro f, apply id_right,
|
||||
intro f, exact (morphism.inverse f),
|
||||
intro f, exact (morphism.inverse_compose f),
|
||||
end
|
||||
end
|
||||
|
||||
end groupoid
|
||||
-- Bundled version of categories
|
||||
-- we don't use Groupoid.carrier explicitly, but rather use Groupoid.carrier (to_Precategory C)
|
||||
structure Groupoid : Type :=
|
||||
(carrier : Type)
|
||||
(struct : groupoid carrier)
|
||||
|
||||
attribute Groupoid.struct [instance] [coercion]
|
||||
-- definition objects [reducible] := Category.objects
|
||||
-- definition category_instance [instance] [coercion] [reducible] := Category.category_instance
|
||||
|
||||
definition Groupoid.to_Precategory [coercion] [reducible] (C : Groupoid) : Precategory :=
|
||||
Precategory.mk (Groupoid.carrier C) C
|
||||
|
||||
definition groupoid.Mk [reducible] := Groupoid.mk
|
||||
definition category.MK [reducible] (C : Precategory) (H : Π (a b : C) (f : a ⟶ b), is_iso f)
|
||||
: Groupoid :=
|
||||
Groupoid.mk C (groupoid.mk' C C H)
|
||||
|
||||
definition Groupoid.eta (C : Groupoid) : Groupoid.mk C C = C :=
|
||||
Groupoid.rec (λob c, idp) C
|
||||
|
||||
end category
|
||||
|
|
|
@ -1,12 +1,18 @@
|
|||
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Floris van Doorn
|
||||
/-
|
||||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.precategory.basic
|
||||
Authors: Floris van Doorn
|
||||
-/
|
||||
|
||||
open eq is_trunc
|
||||
|
||||
structure precategory [class] (ob : Type) : Type :=
|
||||
namespace category
|
||||
|
||||
structure precategory [class] (ob : Type) : Type :=
|
||||
(hom : ob → ob → Type)
|
||||
(homH : Π {a b : ob}, is_hset (hom a b))
|
||||
(homH : Π(a b : ob), is_hset (hom a b))
|
||||
(comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c)
|
||||
(ID : Π (a : ob), hom a a)
|
||||
(assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
|
||||
|
@ -14,33 +20,38 @@ structure precategory [class] (ob : Type) : Type :=
|
|||
(id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f)
|
||||
(id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f)
|
||||
|
||||
attribute precategory [multiple-instances]
|
||||
attribute precategory [multiple-instances]
|
||||
attribute precategory.homH [instance]
|
||||
|
||||
namespace precategory
|
||||
variables {ob : Type} [C : precategory ob]
|
||||
variables {a b c d : ob}
|
||||
include C
|
||||
attribute homH [instance]
|
||||
|
||||
definition compose [reducible] := comp
|
||||
|
||||
definition id [reducible] {a : ob} : hom a a := ID a
|
||||
|
||||
infixr `∘` := comp
|
||||
infixl [parsing-only] `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→))
|
||||
infixr `∘` := precategory.comp
|
||||
-- input ⟶ using \--> (this is a different arrow than \-> (→))
|
||||
infixl [parsing-only] `⟶`:25 := precategory.hom
|
||||
namespace hom
|
||||
infixl `⟶` := hom -- if you open this namespace, hom a b is printed as a ⟶ b
|
||||
infixl `⟶` := precategory.hom -- if you open this namespace, hom a b is printed as a ⟶ b
|
||||
end hom
|
||||
|
||||
variables {h : hom c d} {g : hom b c} {f f' : hom a b} {i : hom a a}
|
||||
abbreviation hom := @precategory.hom
|
||||
abbreviation homH := @precategory.homH
|
||||
abbreviation comp := @precategory.comp
|
||||
abbreviation ID := @precategory.ID
|
||||
abbreviation assoc := @precategory.assoc
|
||||
abbreviation id_left := @precategory.id_left
|
||||
abbreviation id_right := @precategory.id_right
|
||||
|
||||
theorem id_compose (a : ob) : ID a ∘ ID a = ID a := !id_left
|
||||
section basic_lemmas
|
||||
variables {ob : Type} [C : precategory ob]
|
||||
variables {a b c d : ob} {h : c ⟶ d} {g : hom b c} {f f' : hom a b} {i : a ⟶ a}
|
||||
include C
|
||||
|
||||
theorem left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
|
||||
definition id [reducible] := ID a
|
||||
|
||||
definition id_compose (a : ob) : ID a ∘ ID a = ID a := !id_left
|
||||
|
||||
definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
|
||||
calc i = i ∘ id : id_right
|
||||
... = id : H
|
||||
|
||||
theorem right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id :=
|
||||
definition right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id :=
|
||||
calc i = id ∘ i : id_left
|
||||
... = id : H
|
||||
|
||||
|
@ -49,26 +60,29 @@ namespace precategory
|
|||
|
||||
definition is_hprop_eq_hom [instance] : is_hprop (f = f') :=
|
||||
!is_trunc_eq
|
||||
end basic_lemmas
|
||||
|
||||
end precategory
|
||||
structure Precategory : Type :=
|
||||
(carrier : Type)
|
||||
(struct : precategory carrier)
|
||||
|
||||
structure Precategory : Type :=
|
||||
(objects : Type)
|
||||
(category_instance : precategory objects)
|
||||
definition precategory.Mk [reducible] {ob} (C) : Precategory := Precategory.mk ob C
|
||||
definition precategory.MK [reducible] (a b c d e f g h) : Precategory :=
|
||||
Precategory.mk a (precategory.mk b c d e f g h)
|
||||
|
||||
namespace precategory
|
||||
definition Mk {ob} (C) : Precategory := Precategory.mk ob C
|
||||
definition MK (a b c d e f g h) : Precategory := Precategory.mk a (precategory.mk b c d e f g h)
|
||||
abbreviation carrier := @Precategory.carrier
|
||||
|
||||
definition objects [coercion] [reducible] := Precategory.objects
|
||||
definition category_instance [instance] [coercion] [reducible] := Precategory.category_instance
|
||||
notation g `∘⁅` C `⁆` f := @compose (objects C) (category_instance C) _ _ _ g f
|
||||
attribute Precategory.carrier [coercion]
|
||||
attribute Precategory.struct [instance] [priority 10000] [coercion]
|
||||
-- definition precategory.carrier [coercion] [reducible] := Precategory.carrier
|
||||
-- definition precategory.struct [instance] [coercion] [reducible] := Precategory.struct
|
||||
notation g `∘⁅` C `⁆` f := @comp (Precategory.carrier C) (Precategory.struct C) _ _ _ g f
|
||||
-- TODO: make this left associative
|
||||
-- TODO: change this notation?
|
||||
|
||||
end precategory
|
||||
definition Precategory.eta (C : Precategory) : Precategory.mk C C = C :=
|
||||
Precategory.rec (λob c, idp) C
|
||||
|
||||
open precategory
|
||||
end category
|
||||
|
||||
protected definition Precategory.eta (C : Precategory) : Precategory.mk C C = C :=
|
||||
Precategory.rec (λob c, idp) C
|
||||
open category
|
||||
|
|
|
@ -13,27 +13,27 @@ import types.prod types.sigma types.pi
|
|||
|
||||
open eq prod eq eq.ops equiv is_trunc
|
||||
|
||||
namespace precategory
|
||||
namespace category
|
||||
namespace opposite
|
||||
|
||||
definition opposite [reducible] {ob : Type} (C : precategory ob) : precategory ob :=
|
||||
mk (λ a b, hom b a)
|
||||
(λ b a, !homH)
|
||||
precategory.mk (λ a b, hom b a)
|
||||
(λ a b, !homH)
|
||||
(λ a b c f g, g ∘ f)
|
||||
(λ a, id)
|
||||
(λ a b c d f g h, !assoc⁻¹)
|
||||
(λ a b f, !id_right)
|
||||
(λ a b f, !id_left)
|
||||
|
||||
definition Opposite [reducible] (C : Precategory) : Precategory := Mk (opposite C)
|
||||
definition Opposite [reducible] (C : Precategory) : Precategory := precategory.Mk (opposite C)
|
||||
|
||||
infixr `∘op`:60 := @compose _ (opposite _) _ _ _
|
||||
infixr `∘op`:60 := @comp _ (opposite _) _ _ _
|
||||
|
||||
variables {C : Precategory} {a b c : C}
|
||||
|
||||
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
|
||||
|
||||
theorem compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := idp
|
||||
definition compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := idp
|
||||
|
||||
-- TODO: Decide whether just to use funext for this theorem or
|
||||
-- take the trick they use in Coq-HoTT, and introduce a further
|
||||
|
@ -91,9 +91,9 @@ namespace precategory
|
|||
section
|
||||
open prod is_trunc
|
||||
|
||||
definition prod_precategory [reducible] [instance] {obC obD : Type} (C : precategory obC) (D : precategory obD)
|
||||
definition prod_precategory [reducible] {obC obD : Type} (C : precategory obC) (D : precategory obD)
|
||||
: precategory (obC × obD) :=
|
||||
mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
|
||||
precategory.mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
|
||||
(λ a b, !is_trunc_prod)
|
||||
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
|
||||
(λ a, (id, id))
|
||||
|
@ -101,7 +101,8 @@ namespace precategory
|
|||
(λ a b f, prod_eq !id_left !id_left )
|
||||
(λ a b f, prod_eq !id_right !id_right)
|
||||
|
||||
definition Prod_precategory [reducible] (C D : Precategory) : Precategory := Mk (prod_precategory C D)
|
||||
definition Prod_precategory [reducible] (C D : Precategory) : Precategory :=
|
||||
precategory.Mk (prod_precategory C D)
|
||||
|
||||
end
|
||||
end product
|
||||
|
@ -113,8 +114,6 @@ namespace precategory
|
|||
infixr `×c`:30 := product.Prod_precategory
|
||||
--instance [persistent] type_category category_one
|
||||
-- category_two product.prod_category
|
||||
attribute product.prod_precategory [instance]
|
||||
|
||||
end ops
|
||||
|
||||
open ops
|
||||
|
@ -156,7 +155,7 @@ namespace precategory
|
|||
open morphism functor nat_trans
|
||||
definition precategory_functor [instance] [reducible] (C D : Precategory)
|
||||
: precategory (functor C D) :=
|
||||
mk (λa b, nat_trans a b)
|
||||
precategory.mk (λa b, nat_trans a b)
|
||||
(λ a b, @nat_trans.to_hset C D a b)
|
||||
(λ a b c g f, nat_trans.compose g f)
|
||||
(λ a, nat_trans.id)
|
||||
|
@ -165,7 +164,7 @@ namespace precategory
|
|||
(λ a b f, !nat_trans.id_right)
|
||||
|
||||
definition Precategory_functor [reducible] (C D : Precategory) : Precategory :=
|
||||
Mk (precategory_functor C D)
|
||||
precategory.Mk (precategory_functor C D)
|
||||
|
||||
definition Precategory_functor_rev [reducible] (C D : Precategory) : Precategory :=
|
||||
Precategory_functor D C
|
||||
|
@ -206,11 +205,10 @@ namespace precategory
|
|||
end precategory_functor
|
||||
|
||||
namespace ops
|
||||
abbreviation set := Precategory_hset
|
||||
infixr `^c`:35 := Precategory_functor_rev
|
||||
infixr `×f`:30 := product.prod_functor
|
||||
infixr `ᵒᵖᶠ`:(max+1) := opposite.opposite_functor
|
||||
end ops
|
||||
|
||||
|
||||
end precategory
|
||||
end category
|
||||
|
|
|
@ -1,10 +1,14 @@
|
|||
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Floris van Doorn, Jakob von Raumer
|
||||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.precategory.functor
|
||||
Authors: Floris van Doorn, Jakob von Raumer
|
||||
-/
|
||||
|
||||
import .basic types.pi
|
||||
|
||||
open function precategory eq prod equiv is_equiv sigma sigma.ops is_trunc funext
|
||||
open function category eq prod equiv is_equiv sigma sigma.ops is_trunc funext
|
||||
open pi
|
||||
|
||||
structure functor (C D : Precategory) : Type :=
|
||||
|
@ -134,7 +138,7 @@ namespace functor
|
|||
end
|
||||
|
||||
protected definition strict_cat_has_functor_hset
|
||||
[HD : is_hset (objects D)] : is_hset (functor C D) :=
|
||||
[HD : is_hset D] : is_hset (functor C D) :=
|
||||
begin
|
||||
apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv,
|
||||
apply sigma_char,
|
||||
|
@ -151,10 +155,12 @@ namespace functor
|
|||
|
||||
end functor
|
||||
|
||||
namespace precategory
|
||||
|
||||
namespace category
|
||||
open functor
|
||||
|
||||
definition precat_of_strict_precats : precategory (Σ (C : Precategory), is_hset (objects C)) :=
|
||||
--TODO: make this a structure
|
||||
definition precat_of_strict_precats : precategory (Σ (C : Precategory), is_hset C) :=
|
||||
precategory.mk (λ a b, functor a.1 b.1)
|
||||
(λ a b, @functor.strict_cat_has_functor_hset a.1 b.1 b.2)
|
||||
(λ a b c g f, functor.compose g f)
|
||||
|
@ -163,13 +169,13 @@ namespace precategory
|
|||
(λ a b f, !functor.id_left)
|
||||
(λ a b f, !functor.id_right)
|
||||
|
||||
definition Precat_of_strict_cats := Mk precat_of_strict_precats
|
||||
definition Precat_of_strict_cats := precategory.Mk precat_of_strict_precats
|
||||
|
||||
namespace ops
|
||||
|
||||
abbreviation PreCat := Precat_of_strict_cats
|
||||
attribute precat_of_strict_precats [instance]
|
||||
--attribute precat_of_strict_precats [instance]
|
||||
|
||||
end ops
|
||||
|
||||
end precategory
|
||||
end category
|
||||
|
|
|
@ -1,10 +1,14 @@
|
|||
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Floris van Doorn, Jakob von Raumer
|
||||
/-
|
||||
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.precategory.iso
|
||||
Authors: Floris van Doorn, Jakob von Raumer
|
||||
-/
|
||||
|
||||
import .basic .morphism types.sigma
|
||||
|
||||
open eq precategory sigma sigma.ops equiv is_equiv function is_trunc
|
||||
open eq category sigma sigma.ops equiv is_equiv function is_trunc
|
||||
open prod
|
||||
|
||||
namespace morphism
|
||||
|
@ -62,7 +66,7 @@ namespace morphism
|
|||
end
|
||||
|
||||
-- In a precategory, equal objects are isomorphic
|
||||
definition iso_of_path (p : a = b) : isomorphic a b :=
|
||||
definition iso_of_path (p : a = b) : a ≅ b :=
|
||||
eq.rec_on p (isomorphic.mk id)
|
||||
|
||||
end morphism
|
||||
|
|
|
@ -1,14 +1,20 @@
|
|||
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Floris van Doorn, Jakob von Raumer
|
||||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.precategory.morphism
|
||||
Authors: Floris van Doorn, Jakob von Raumer
|
||||
-/
|
||||
|
||||
import .basic
|
||||
|
||||
open eq precategory sigma sigma.ops equiv is_equiv function is_trunc
|
||||
open eq category sigma sigma.ops equiv is_equiv function is_trunc
|
||||
|
||||
namespace morphism
|
||||
variables {ob : Type} [C : precategory ob] include C
|
||||
variables {ob : Type} [C : precategory ob]
|
||||
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
|
||||
include C
|
||||
|
||||
inductive is_section [class] (f : a ⟶ b) : Type
|
||||
:= mk : ∀{g}, g ∘ f = id → is_section f
|
||||
inductive is_retraction [class] (f : a ⟶ b) : Type
|
||||
|
@ -80,7 +86,7 @@ namespace morphism
|
|||
theorem inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H = @inverse _ _ _ _ f H' :=
|
||||
inverse_eq_intro_left !inverse_compose
|
||||
|
||||
theorem inverse_involutive (f : a ⟶ b) [H : is_iso f] : (f⁻¹)⁻¹ = f :=
|
||||
theorem inverse_involutive (f : a ⟶ b) [H1 : is_iso f] [H2 : is_iso (f⁻¹)] : (f⁻¹)⁻¹ = f :=
|
||||
inverse_eq_intro_right !inverse_compose
|
||||
|
||||
theorem retraction_of_id : retraction_of (ID a) = id :=
|
||||
|
|
|
@ -1,25 +1,24 @@
|
|||
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Floris van Doorn, Jakob von Raumer
|
||||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.precategory.nat_trans
|
||||
Author: Floris van Doorn, Jakob von Raumer
|
||||
-/
|
||||
|
||||
import .functor .morphism
|
||||
open eq precategory functor is_trunc equiv sigma.ops sigma is_equiv function pi funext
|
||||
open eq category functor is_trunc equiv sigma.ops sigma is_equiv function pi funext
|
||||
|
||||
inductive nat_trans {C D : Precategory} (F G : C ⇒ D) : Type :=
|
||||
mk : Π (η : Π (a : C), hom (F a) (G a))
|
||||
(nat : Π {a b : C} (f : hom a b), G f ∘ η a = η b ∘ F f),
|
||||
nat_trans F G
|
||||
structure nat_trans {C D : Precategory} (F G : C ⇒ D) :=
|
||||
(natural_map : Π (a : C), hom (F a) (G a))
|
||||
(naturality : Π {a b : C} (f : hom a b), G f ∘ natural_map a = natural_map b ∘ F f)
|
||||
|
||||
namespace nat_trans
|
||||
|
||||
infixl `⟹`:25 := nat_trans -- \==>
|
||||
variables {C D : Precategory} {F G H I : C ⇒ D}
|
||||
|
||||
definition natural_map [coercion] (η : F ⟹ G) : Π (a : C), F a ⟶ G a :=
|
||||
nat_trans.rec (λ x y, x) η
|
||||
|
||||
theorem naturality (η : F ⟹ G) : Π⦃a b : C⦄ (f : a ⟶ b), G f ∘ η a = η b ∘ F f :=
|
||||
nat_trans.rec (λ x y, y) η
|
||||
attribute natural_map [coercion]
|
||||
|
||||
protected definition compose (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
|
||||
nat_trans.mk
|
||||
|
@ -84,10 +83,10 @@ namespace nat_trans
|
|||
begin
|
||||
apply is_trunc_is_equiv_closed, apply (equiv.to_is_equiv !sigma_char),
|
||||
apply is_trunc_sigma,
|
||||
apply is_trunc_pi, intro a, exact (@homH (objects D) _ (F a) (G a)),
|
||||
apply is_trunc_pi, intro a, exact (@homH (Precategory.carrier D) _ (F a) (G a)),
|
||||
intro η, apply is_trunc_pi, intro a,
|
||||
apply is_trunc_pi, intro b, apply is_trunc_pi, intro f,
|
||||
apply is_trunc_eq, apply is_trunc_succ, exact (@homH (objects D) _ (F a) (G b)),
|
||||
apply is_trunc_eq, apply is_trunc_succ, exact (@homH (Precategory.carrier D) _ (F a) (G b)),
|
||||
end
|
||||
|
||||
end nat_trans
|
||||
|
|
|
@ -7,22 +7,23 @@ Author: Floris van Doorn
|
|||
-/
|
||||
|
||||
--note: modify definition in category.set
|
||||
import .constructions .morphism
|
||||
import algebra.category.constructions .morphism
|
||||
|
||||
open eq precategory functor is_trunc equiv is_equiv pi
|
||||
open is_trunc.trunctype funext precategory.ops prod.ops
|
||||
open category eq category.ops functor prod.ops is_trunc
|
||||
|
||||
set_option pp.beta true
|
||||
|
||||
namespace yoneda
|
||||
set_option class.conservative false
|
||||
|
||||
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : a5 ⟶ a6) (f2 : a4 ⟶ a5) (f3 : a3 ⟶ a4) (f4 : a2 ⟶ a3) (f5 : a1 ⟶ a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
|
||||
--TODO: why does this take so much steps? (giving more information than "assoc" hardly helps)
|
||||
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C}
|
||||
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
|
||||
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
|
||||
calc
|
||||
(f1 ∘ f2) ∘ f3 ∘ f4 ∘ f5 = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc
|
||||
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc
|
||||
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : assoc
|
||||
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : assoc
|
||||
... = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 : assoc
|
||||
... = _ : assoc
|
||||
|
||||
--disturbing behaviour: giving the type of f "(x ⟶ y)" explicitly makes the unifier loop
|
||||
definition representable_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set :=
|
||||
|
@ -37,7 +38,7 @@ namespace yoneda
|
|||
end yoneda
|
||||
|
||||
|
||||
|
||||
open is_equiv equiv
|
||||
|
||||
namespace functor
|
||||
open prod nat_trans
|
||||
|
|
|
@ -7,7 +7,8 @@ Author: Jakob von Raumer
|
|||
|
||||
Ported from Coq HoTT
|
||||
-/
|
||||
exit
|
||||
|
||||
-- This file is nowhere used. Do we want to keep it?
|
||||
open eq function funext
|
||||
|
||||
namespace is_equiv
|
||||
|
|
|
@ -1,31 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Jeremy Avigad, Jakob von Raumer
|
||||
-- Ported from Coq HoTT
|
||||
prelude
|
||||
import ..path ..equiv
|
||||
open eq
|
||||
|
||||
-- Funext
|
||||
-- ------
|
||||
|
||||
-- Define function extensionality as a type class
|
||||
-- structure funext [class] : Type :=
|
||||
-- (elim : Π (A : Type) (P : A → Type ) (f g : Π x, P x), is_equiv (@apD10 A P f g))
|
||||
-- set_option pp.universes true
|
||||
-- check @funext.mk
|
||||
-- check @funext.elim
|
||||
exit
|
||||
|
||||
namespace funext
|
||||
|
||||
attribute elim [instance]
|
||||
|
||||
definition eq_of_homotopy [F : funext] {A : Type} {P : A → Type} {f g : Π x, P x} : f ∼ g → f = g :=
|
||||
is_equiv.inv (@apD10 A P f g)
|
||||
|
||||
definition eq_of_homotopy2 [F : funext] {A B : Type} {P : A → B → Type}
|
||||
(f g : Πx y, P x y) : (Πx y, f x y = g x y) → f = g :=
|
||||
λ E, eq_of_homotopy (λx, eq_of_homotopy (E x))
|
||||
|
||||
end funext
|
|
@ -1,10 +1,16 @@
|
|||
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Jakob von Raumer
|
||||
-- Ported from Coq HoTT
|
||||
/-
|
||||
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: init.axioms.funext_of_ua
|
||||
Author: Jakob von Raumer
|
||||
|
||||
Ported from Coq HoTT
|
||||
-/
|
||||
|
||||
prelude
|
||||
import ..equiv ..datatypes ..types.prod
|
||||
import .funext_varieties .ua .funext
|
||||
import .funext_varieties .ua
|
||||
|
||||
open eq function prod is_trunc sigma equiv is_equiv unit
|
||||
|
||||
|
|
|
@ -1,9 +1,15 @@
|
|||
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Jakob von Raumer
|
||||
-- Ported from Coq HoTT
|
||||
/-
|
||||
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: init.axioms.funext_varieties
|
||||
Authors: Jakob von Raumer
|
||||
|
||||
Ported from Coq HoTT
|
||||
-/
|
||||
|
||||
prelude
|
||||
import ..path ..trunc ..equiv .funext
|
||||
import ..path ..trunc ..equiv
|
||||
|
||||
open eq is_trunc sigma function
|
||||
|
||||
|
@ -46,7 +52,7 @@ definition weak_funext_of_naive_funext : naive_funext → weak_funext :=
|
|||
|
||||
context
|
||||
universes l k
|
||||
parameters (wf : weak_funext.{l k}) {A : Type.{l}} {B : A → Type.{k}} (f : Π x, B x)
|
||||
parameters [wf : weak_funext.{l k}] {A : Type.{l}} {B : A → Type.{k}} (f : Π x, B x)
|
||||
|
||||
definition is_contr_sigma_homotopy [instance] : is_contr (Σ (g : Π x, B x), f ∼ g) :=
|
||||
is_contr.mk (sigma.mk f (homotopy.refl f))
|
||||
|
|
|
@ -1,7 +1,13 @@
|
|||
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Jakob von Raumer
|
||||
-- Ported from Coq HoTT
|
||||
/-
|
||||
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: init.axioms.ua
|
||||
Author: Jakob von Raumer
|
||||
|
||||
Ported from Coq HoTT
|
||||
-/
|
||||
|
||||
prelude
|
||||
import ..path ..equiv
|
||||
open eq equiv is_equiv
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: init.bool
|
||||
Author: Leonardo de Moura
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.datatypes init.reserved_notation
|
||||
|
||||
|
|
|
@ -7,6 +7,7 @@ Authors: Leonardo de Moura, Jakob von Raumer
|
|||
|
||||
Basic datatypes
|
||||
-/
|
||||
|
||||
prelude
|
||||
notation [parsing-only] `Type'` := Type.{_+1}
|
||||
notation [parsing-only] `Type₊` := Type.{_+1}
|
||||
|
|
|
@ -5,10 +5,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: init.default
|
||||
Authors: Leonardo de Moura, Jakob von Raumer
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.datatypes init.reserved_notation init.tactic init.logic
|
||||
import init.bool init.num init.priority init.relation init.wf
|
||||
import init.types.sigma init.types.prod init.types.empty
|
||||
import init.trunc init.path init.equiv init.util
|
||||
import init.axioms.ua init.axioms.funext init.axioms.funext_of_ua
|
||||
import init.axioms.ua init.axioms.funext_of_ua
|
||||
import init.hedberg init.nat
|
||||
|
|
|
@ -218,33 +218,41 @@ end is_equiv
|
|||
|
||||
open is_equiv
|
||||
namespace equiv
|
||||
|
||||
namespace ops
|
||||
attribute to_fun [coercion]
|
||||
end ops
|
||||
open equiv.ops
|
||||
attribute to_is_equiv [instance]
|
||||
|
||||
infix `≃`:25 := equiv
|
||||
|
||||
context
|
||||
parameters {A B C : Type} (eqf : A ≃ B)
|
||||
variables {A B C : Type}
|
||||
|
||||
private definition f : A → B := to_fun eqf
|
||||
private definition Hf [instance] : is_equiv f := to_is_equiv eqf
|
||||
protected definition MK (f : A → B) (g : B → A) (retr : f ∘ g ∼ id) (sect : g ∘ f ∼ id) : A ≃ B :=
|
||||
equiv.mk f (adjointify f g retr sect)
|
||||
definition to_inv (f : A ≃ B) : B → A :=
|
||||
f⁻¹
|
||||
|
||||
protected definition refl : A ≃ A := equiv.mk id is_equiv.is_equiv_id
|
||||
protected definition refl : A ≃ A :=
|
||||
equiv.mk id !is_equiv_id
|
||||
|
||||
definition trans (eqg: B ≃ C) : A ≃ C :=
|
||||
equiv.mk ((to_fun eqg) ∘ f)
|
||||
(is_equiv_compose f (to_fun eqg))
|
||||
protected definition symm (f : A ≃ B) : B ≃ A :=
|
||||
equiv.mk (f⁻¹) !is_equiv_inv
|
||||
|
||||
definition equiv_of_eq_of_equiv (f' : A → B) (Heq : to_fun eqf = f') : A ≃ B :=
|
||||
equiv.mk f' (is_equiv.is_equiv_eq_closed f Heq)
|
||||
protected definition trans (f : A ≃ B) (g: B ≃ C) : A ≃ C :=
|
||||
equiv.mk (g ∘ f) !is_equiv_compose
|
||||
|
||||
definition symm : B ≃ A :=
|
||||
equiv.mk (is_equiv.inv f) !is_equiv.is_equiv_inv
|
||||
definition equiv_of_eq_of_equiv (f : A ≃ B) (f' : A → B) (Heq : f = f') : A ≃ B :=
|
||||
equiv.mk f' (is_equiv_eq_closed f Heq)
|
||||
|
||||
definition equiv_ap (P : A → Type) {x y : A} {p : x = y} : (P x) ≃ (P y) :=
|
||||
equiv.mk (eq.transport P p) (is_equiv_tr P p)
|
||||
definition eq_equiv_fn_eq (f : A → B) [H : is_equiv f] (a b : A) : (a = b) ≃ (f a = f b) :=
|
||||
equiv.mk (ap f) !is_equiv_ap
|
||||
|
||||
end
|
||||
definition eq_equiv_fn_eq_of_equiv (f : A ≃ B) (a b : A) : (a = b) ≃ (f a = f b) :=
|
||||
equiv.mk (ap f) !is_equiv_ap
|
||||
|
||||
definition equiv_ap (P : A → Type) {a b : A} (p : a = b) : (P a) ≃ (P b) :=
|
||||
equiv.mk (transport P p) !is_equiv_tr
|
||||
|
||||
--we need this theorem for the funext_of_ua proof
|
||||
theorem inv_eq {A B : Type} (eqf eqg : A ≃ B) (p : eqf = eqg) : (to_fun eqf)⁻¹ = (to_fun eqg)⁻¹ :=
|
||||
|
|
|
@ -7,6 +7,7 @@ Author: Leonardo de Moura
|
|||
|
||||
General operations on functions.
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.reserved_notation
|
||||
|
||||
|
|
|
@ -6,6 +6,7 @@ Author: Leonardo de Moura
|
|||
|
||||
Hedberg's Theorem: every type with decidable equality is a hset
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.trunc
|
||||
open eq eq.ops nat is_trunc sigma
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: init.logic
|
||||
Authors: Leonardo de Moura
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.datatypes init.reserved_notation
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module init.num
|
||||
Authors: Leonardo de Moura
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.logic init.bool
|
||||
open bool
|
||||
|
|
|
@ -3,7 +3,7 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: init.path
|
||||
Author: Jeremy Avigad, Jakob von Raumer
|
||||
Author: Jeremy Avigad, Jakob von Raumer, Floris van Doorn
|
||||
|
||||
Ported from Coq HoTT
|
||||
-/
|
||||
|
@ -549,10 +549,10 @@ namespace eq
|
|||
-- Unwhiskering, a.k.a. cancelling
|
||||
|
||||
definition cancel_left {x y z : A} (p : x = y) (q r : y = z) : (p ⬝ q = p ⬝ r) → (q = r) :=
|
||||
eq.rec_on p (take r, eq.rec_on r (take q a, (idp_con q)⁻¹ ⬝ a)) r q
|
||||
eq.rec_on p (λq r s, !idp_con⁻¹ ⬝ s ⬝ !idp_con) q r
|
||||
|
||||
definition cancel_right {x y z : A} (p q : x = y) (r : y = z) : (p ⬝ r = q ⬝ r) → (p = q) :=
|
||||
eq.rec_on r (eq.rec_on p (take q a, a ⬝ con_idp q)) q
|
||||
eq.rec_on r (λs, !con_idp⁻¹ ⬝ s ⬝ !con_idp)
|
||||
|
||||
-- Whiskering and identity paths.
|
||||
|
||||
|
@ -580,7 +580,6 @@ namespace eq
|
|||
idp ◾ h = whisker_left idp h :> (idp ⬝ p = idp ⬝ q) :=
|
||||
eq.rec_on h idp
|
||||
|
||||
-- TODO: note, 4 inductions
|
||||
-- The interchange law for concatenation.
|
||||
definition con2_con_con2 {p p' p'' : x = y} {q q' q'' : y = z}
|
||||
(a : p = p') (b : p' = p'') (c : q = q') (d : q' = q'') :
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: init.priority
|
||||
Authors: Leonardo de Moura
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.datatypes
|
||||
definition std.priority.default : num := 1000
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: init.relation
|
||||
Authors: Leonardo de Moura
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.logic
|
||||
|
||||
|
|
|
@ -7,6 +7,7 @@ Authors: Leonardo de Moura
|
|||
|
||||
Basic datatypes
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.datatypes
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ expression. We should view 'tactic' as automation that when execute
|
|||
produces a term. tactic.builtin is just a "dummy" for creating the
|
||||
definitions that are actually implemented in C++
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.datatypes init.reserved_notation
|
||||
|
||||
|
|
|
@ -196,7 +196,7 @@ namespace is_trunc
|
|||
|
||||
notation n `-Type` := trunctype n
|
||||
abbreviation hprop := -1-Type
|
||||
abbreviation hset := (-1.+1)-Type
|
||||
abbreviation hset := 0-Type
|
||||
|
||||
protected definition hprop.mk := @trunctype.mk -1
|
||||
protected definition hset.mk := @trunctype.mk (-1.+1)
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: init.types.prod
|
||||
Author: Leonardo de Moura, Jeremy Avigad
|
||||
-/
|
||||
|
||||
prelude
|
||||
import ..wf ..num
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: init.types.sigma
|
||||
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.num
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: init.types.sum
|
||||
Author: Leonardo de Moura, Jeremy Avigad
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.datatypes init.reserved_notation
|
||||
|
||||
|
|
|
@ -7,6 +7,7 @@ Author: Leonardo de Moura
|
|||
|
||||
Auxiliary definitions used by automation
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.trunc
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: init.wf
|
||||
Author: Leonardo de Moura
|
||||
-/
|
||||
|
||||
prelude
|
||||
import init.relation init.tactic
|
||||
|
||||
|
|
|
@ -1,11 +0,0 @@
|
|||
exit
|
||||
--javra: Maybe this should go somewhere else
|
||||
|
||||
open eq
|
||||
|
||||
inductive tdecidable [class] (A : Type) : Type :=
|
||||
inl : A → tdecidable A,
|
||||
inr : ¬A → tdecidable A
|
||||
|
||||
structure decidable_paths [class] (A : Type) :=
|
||||
(elim : ∀(x y : A), tdecidable (x = y))
|
|
@ -1,6 +1,10 @@
|
|||
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Authors: Jakob von Raumer
|
||||
/-
|
||||
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: truncation
|
||||
Authors: Jakob von Raumer
|
||||
-/
|
||||
|
||||
open is_trunc
|
||||
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: types.W
|
||||
Author: Floris van Doorn
|
||||
|
||||
Theorems about W-types (well-founded trees)
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Floris van Doorn
|
||||
Ported from Coq HoTT
|
||||
|
||||
Module: types.path
|
||||
Author: Floris van Doorn
|
||||
|
||||
Ported from Coq HoTT
|
||||
Theorems about path types (identity types)
|
||||
-/
|
||||
|
||||
|
@ -133,11 +135,18 @@ namespace path
|
|||
equiv.trans (equiv_concat_l p a3) (equiv_concat_r q a2)
|
||||
|
||||
/- BELOW STILL NEEDS TO BE PORTED FROM COQ HOTT -/
|
||||
|
||||
-- definition isequiv_whiskerL [instance] (p : a1 = a2) (q r : a2 = a3)
|
||||
-- : is_equiv (@whisker_left A a1 a2 a3 p q r) :=
|
||||
-- begin
|
||||
|
||||
-- set_option pp.beta true
|
||||
-- check @cancel_left
|
||||
-- set_option pp.full_names true
|
||||
-- definition isequiv_whiskerL [instance] (p : a1 = a2) (q r : a2 = a3)
|
||||
-- : is_equiv (@whisker_left A a1 a2 a3 p q r) :=
|
||||
-- begin
|
||||
-- fapply adjointify,
|
||||
-- intro H, apply (!cancel_left H),
|
||||
-- intro s, esimp {function.compose, function.id}, unfold eq.cancel_left,
|
||||
-- -- reverts (q,r,a), apply (eq.rec_on p), esimp {whisker_left,concat2, idp, cancel_left, eq.rec_on}, intros, esimp,
|
||||
-- end
|
||||
-- check @whisker_right_con_whisker_left
|
||||
-- end
|
||||
-- /-begin
|
||||
-- refine (isequiv_adjointify _ _ _ _).
|
||||
|
|
|
@ -1,11 +1,14 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Floris van Doorn
|
||||
Ported from Coq HoTT
|
||||
|
||||
Module: types.pi
|
||||
Author: Floris van Doorn
|
||||
|
||||
Ported from Coq HoTT
|
||||
Theorems about pi-types (dependent function spaces)
|
||||
-/
|
||||
|
||||
import types.sigma
|
||||
|
||||
open eq equiv is_equiv funext
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Floris van Doorn
|
||||
Ported from Coq HoTT
|
||||
|
||||
Module: types.prod
|
||||
Author: Floris van Doorn
|
||||
|
||||
Ported from Coq HoTT
|
||||
Theorems about products
|
||||
-/
|
||||
|
||||
|
|
|
@ -1,11 +1,14 @@
|
|||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Floris van Doorn
|
||||
Ported from Coq HoTT
|
||||
|
||||
Module: types.sigma
|
||||
Author: Floris van Doorn
|
||||
|
||||
Ported from Coq HoTT
|
||||
Theorems about sigma-types (dependent sums)
|
||||
-/
|
||||
|
||||
import types.prod
|
||||
|
||||
open eq sigma sigma.ops equiv is_equiv
|
||||
|
|
|
@ -29,17 +29,16 @@ namespace is_trunc
|
|||
definition is_trunc.pi_char (n : trunc_index) (A : Type) :
|
||||
(Π (x y : A), is_trunc n (x = y)) ≃ (is_trunc (n .+1) A) :=
|
||||
begin
|
||||
fapply equiv.mk,
|
||||
fapply equiv.MK,
|
||||
{intro H, apply is_trunc_succ_intro},
|
||||
{fapply is_equiv.adjointify,
|
||||
{intros (H, x, y), apply is_trunc_eq},
|
||||
{intro H, apply (is_trunc.rec_on H), intro Hint, apply idp},
|
||||
{intro P,
|
||||
unfold compose, apply eq_of_homotopy,
|
||||
exact sorry}},
|
||||
{intro P, apply eq_of_homotopy, intro a, apply eq_of_homotopy, intro b,
|
||||
esimp {function.id,compose,is_trunc_succ_intro,is_trunc_eq},
|
||||
generalize (P a b), intro H, apply (is_trunc.rec_on H), intro H', apply idp},
|
||||
end
|
||||
|
||||
definition is_hprop_is_trunc {n : trunc_index} :
|
||||
definition is_hprop_is_trunc [instance] (n : trunc_index) :
|
||||
Π (A : Type), is_hprop (is_trunc n A) :=
|
||||
begin
|
||||
apply (trunc_index.rec_on n),
|
||||
|
@ -84,7 +83,7 @@ namespace is_trunc
|
|||
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apD,
|
||||
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
|
||||
= imp (transport (λx, R a x) p r), from
|
||||
to_fun (symm !heq_pi) H2,
|
||||
to_fun (equiv.symm !heq_pi) H2,
|
||||
have H4 : imp (refl a) ⬝ p = imp (refl a), from
|
||||
calc
|
||||
imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_paths_r
|
||||
|
@ -117,4 +116,25 @@ namespace is_trunc
|
|||
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
|
||||
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_leq H (λp, eq.rec_on p !K))
|
||||
|
||||
open trunctype equiv equiv.ops
|
||||
|
||||
protected definition trunctype.sigma_char.{l} (n : trunc_index) :
|
||||
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
/--/ intro A, exact (⟨trunctype_type A, is_trunc_trunctype_type A⟩),
|
||||
/--/ intro S, exact (trunctype.mk S.1 S.2),
|
||||
/--/ intro S, apply (sigma.rec_on S), intros (S1, S2), apply idp,
|
||||
intro A, apply (trunctype.rec_on A), intros (A1, A2), apply idp,
|
||||
end
|
||||
|
||||
-- set_option pp.notation false
|
||||
protected definition trunctype.eq (n : trunc_index) (A B : n-Type) :
|
||||
(A = B) ≃ (trunctype_type A = trunctype_type B) :=
|
||||
calc
|
||||
(A = B) ≃ (trunctype.sigma_char n A = trunctype.sigma_char n B) : eq_equiv_fn_eq_of_equiv
|
||||
... ≃ ((trunctype.sigma_char n A).1 = (trunctype.sigma_char n B).1) : equiv.symm (!equiv_subtype)
|
||||
... ≃ (trunctype_type A = trunctype_type B) : equiv.refl
|
||||
|
||||
|
||||
end is_trunc
|
||||
|
|
Loading…
Reference in a new issue