Commit graph

18 commits

Author SHA1 Message Date
Rob Lewis
a72ca936c0 chore(library/real): replace theorems with versions from algebra 2015-06-16 11:30:12 -07:00
Rob Lewis
b94d0a948d chore(library/data/real): replace theorems with more general versions from algebra 2015-06-16 11:30:12 -07:00
Rob Lewis
8d0518444d chore(library/data/{pnat, real}): rename pnat theorems 2015-06-16 11:30:12 -07:00
Rob Lewis
ff0ba6687e feat(library/algebra/ordered_field): move identity about abs to ordered_field 2015-06-16 11:30:12 -07:00
Rob Lewis
090f00458d chore(library/data/real): remove redundant theorems 2015-06-16 11:30:12 -07:00
Rob Lewis
1f4765e30a feat(library/algebra/ordered_ring): add theorems used for rational upper bounds 2015-06-16 11:30:12 -07:00
Rob Lewis
cf7c85e5fd feat(library/data/real): fill in lots of sorrys about pnats 2015-06-16 11:30:12 -07:00
Jeremy Avigad
658c5a2c49 feat(library/rat/basic.lean): add reduce for rat, and num and denom 2015-06-10 16:39:17 -07:00
Rob Lewis
d287b20018 chore(library/data/real): move more lemmas to algebra 2015-06-09 16:27:55 +10:00
Rob Lewis
01f0bb827c feat(library/data/real): use new algebra lemmas in completeness proof 2015-06-09 16:14:52 +10:00
Rob Lewis
b1aea149db chore(library/data/real): update md 2015-06-09 15:43:43 +10:00
Rob Lewis
e112468f99 feat(library/data/real): prove reals are Cauchy complete 2015-06-09 15:39:51 +10:00
Rob Lewis
3749a8ad04 chore(library/data/real): update real.md 2015-06-09 15:39:51 +10:00
Rob Lewis
b1404c5943 feat(library/data/real): fill in sorrys in proof that R is l.o. field 2015-06-01 23:00:53 +10:00
Rob Lewis
9843e61583 feat(library/data/real): define inverses of reals, prove (classically) that R is a discrete linear ordered field 2015-06-01 23:00:53 +10:00
Rob Lewis
82f85a574d feat(library/data/real): prove reals form an ordered ring 2015-05-29 14:11:51 +10:00
Leonardo de Moura
7f0951b8e7 feat(library/tactic): improve assumption tactic performance 2015-05-25 20:22:37 -07:00
Rob Lewis
393cefcf97 feat(library/data/real): define real numbers, prove they form a commutative ring 2015-05-26 12:05:53 +10:00