Commit graph

14 commits

Author SHA1 Message Date
Jeremy Avigad
f8a8502b14 refactor(library/theories/group_theory): rename group_theory to finite_group_theory 2016-05-06 14:15:51 -07:00
Jeremy Avigad
4050892889 refactor(library/*): rename 'compose' to 'comp' 2016-03-02 22:48:05 -05:00
Leonardo de Moura
deb1b3dc79 refactor(library): replace assert-exprs with have-exprs 2016-02-29 11:53:26 -08:00
Jeremy Avigad
518a77587a refactor(library/data/{set,finset},library/*): use compl for set and finset complement 2016-02-22 11:25:23 -08:00
Jeremy Avigad
12a69bad04 refactor(library/data/finset/basic,library/*): get rid of finset singleton 2015-12-31 15:16:57 -08:00
Leonardo de Moura
49eae56db4 test(library/theories/group_theory): test auto-include in the group theory library 2015-12-13 13:40:54 -08:00
Leonardo de Moura
b94e31a72c refactor(library): remove algebra namespace 2015-12-05 23:50:01 -08:00
Leonardo de Moura
fbe80d48dc chore(library): remove "set_option pp.*" commands 2015-11-08 14:04:55 -08:00
Jeremy Avigad
ffbb2be6ac fix(library/theories/group_theory): group_theory 2015-11-08 14:04:55 -08:00
Leonardo de Moura
f6d22c0002 fix(library/theories/group_theory/finsubg): fix compilation errors 2015-11-08 14:04:55 -08:00
Jeremy Avigad
8f815cabc0 refactor(library/data/finset/comb,library/data/set/basic,library/*): rename 'filter' to 'sep' to free up 'set.filter' 2015-08-08 18:10:44 -04:00
Jeremy Avigad
eaf886cb5a refactor(library/algebra/group_bigops,library/*): put group_bigops in 'finset' namespace, in preparation for set versions 2015-08-08 04:23:52 -07:00
Jeremy Avigad
c9d6cc5255 feat(library/data/{finset,set}): various basic facts 2015-07-25 14:02:44 -04:00
Haitao Zhang
a04c6b0c7d feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
  finite cosets and lcoset_type, normalizer for finite groups, coset product
  and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
  Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-15 20:02:11 -07:00