lean2/src/kernel/expr.cpp
Leonardo de Moura 0d7902f9eb feat(kernel/type_checker): finish is_convertible predicate
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-04-23 20:16:14 -07:00

524 lines
18 KiB
C++

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Soonho Kong
*/
#include <vector>
#include <sstream>
#include <string>
#include <algorithm>
#include <limits>
#include "util/list_fn.h"
#include "util/hash.h"
#include "util/buffer.h"
#include "util/object_serializer.h"
#include "kernel/expr.h"
#include "kernel/expr_eq_fn.h"
#include "kernel/free_vars.h"
#include "kernel/max_sharing.h"
namespace lean {
static expr g_dummy(mk_var(0));
expr::expr():expr(g_dummy) {}
unsigned hash_levels(levels const & ls) {
unsigned r = 23;
for (auto const & l : ls)
r = hash(hash(l), r);
return r;
}
expr_cell::expr_cell(expr_kind k, unsigned h, bool has_mv, bool has_local, bool has_param_univ):
m_kind(static_cast<unsigned>(k)),
m_flags(0),
m_has_mv(has_mv),
m_has_local(has_local),
m_has_param_univ(has_param_univ),
m_hash(h),
m_rc(0) {
// m_hash_alloc does not need to be a unique identifier.
// We want diverse hash codes because given expr_cell * c1 and expr_cell * c2,
// if c1 != c2, then there is high probability c1->m_hash_alloc != c2->m_hash_alloc.
// Remark: using pointer address as a hash code is not a good idea.
// - each execution run will behave differently.
// - the hash is not diverse enough
static LEAN_THREAD_LOCAL unsigned g_hash_alloc_counter = 0;
m_hash_alloc = g_hash_alloc_counter;
g_hash_alloc_counter++;
}
void expr_cell::dec_ref(expr & e, buffer<expr_cell*> & todelete) {
if (e.m_ptr) {
expr_cell * c = e.steal_ptr();
lean_assert(!(e.m_ptr));
if (c->dec_ref_core())
todelete.push_back(c);
}
}
optional<bool> expr_cell::is_arrow() const {
// it is stored in bits 0-1
unsigned r = (m_flags & (1+2));
if (r == 0) {
return optional<bool>();
} else if (r == 1) {
return optional<bool>(true);
} else {
lean_assert(r == 2);
return optional<bool>(false);
}
}
void expr_cell::set_is_arrow(bool flag) {
unsigned mask = flag ? 1 : 2;
m_flags |= mask;
lean_assert(is_arrow() && *is_arrow() == flag);
}
bool is_meta(expr const & e) {
expr const * it = &e;
while (is_app(*it)) {
it = &(app_fn(*it));
}
return is_metavar(*it);
}
// Expr variables
expr_var::expr_var(unsigned idx):
expr_cell(expr_kind::Var, idx, false, false, false),
m_vidx(idx) {
if (idx == std::numeric_limits<unsigned>::max())
throw exception("invalid free variable index, de Bruijn index is too big");
}
// Expr constants
expr_const::expr_const(name const & n, levels const & ls):
expr_cell(expr_kind::Constant, ::lean::hash(n.hash(), hash_levels(ls)), has_meta(ls), false, has_param(ls)),
m_name(n),
m_levels(ls) {}
// Expr metavariables and local variables
expr_mlocal::expr_mlocal(bool is_meta, name const & n, expr const & t):
expr_cell(is_meta ? expr_kind::Meta : expr_kind::Local, n.hash(), is_meta || t.has_metavar(), !is_meta || t.has_local(), t.has_param_univ()),
m_name(n),
m_type(t) {}
void expr_mlocal::dealloc(buffer<expr_cell*> & todelete) {
dec_ref(m_type, todelete);
delete(this);
}
// Composite expressions
expr_composite::expr_composite(expr_kind k, unsigned h, bool has_mv, bool has_local, bool has_param_univ, unsigned d, unsigned fv_range):
expr_cell(k, h, has_mv, has_local, has_param_univ),
m_depth(d),
m_free_var_range(fv_range) {}
// Expr applications
expr_app::expr_app(expr const & fn, expr const & arg):
expr_composite(expr_kind::App, ::lean::hash(fn.hash(), arg.hash()),
fn.has_metavar() || arg.has_metavar(),
fn.has_local() || arg.has_local(),
fn.has_param_univ() || arg.has_param_univ(),
std::max(get_depth(fn), get_depth(arg)) + 1,
std::max(get_free_var_range(fn), get_free_var_range(arg))),
m_fn(fn), m_arg(arg) {}
void expr_app::dealloc(buffer<expr_cell*> & todelete) {
dec_ref(m_fn, todelete);
dec_ref(m_arg, todelete);
delete(this);
}
static unsigned dec(unsigned k) { return k == 0 ? 0 : k - 1; }
// Expr binders (Lambda, Pi)
expr_binder::expr_binder(expr_kind k, name const & n, expr const & t, expr const & b):
expr_composite(k, ::lean::hash(t.hash(), b.hash()),
t.has_metavar() || b.has_metavar(),
t.has_local() || b.has_local(),
t.has_param_univ() || b.has_param_univ(),
std::max(get_depth(t), get_depth(b)) + 1,
std::max(get_free_var_range(t), dec(get_free_var_range(b)))),
m_name(n),
m_domain(t),
m_body(b) {
lean_assert(k == expr_kind::Lambda || k == expr_kind::Pi);
}
void expr_binder::dealloc(buffer<expr_cell*> & todelete) {
dec_ref(m_body, todelete);
dec_ref(m_domain, todelete);
delete(this);
}
// Expr Sort
expr_sort::expr_sort(level const & l):
expr_cell(expr_kind::Sort, ::lean::hash(l), has_meta(l), false, has_param(l)),
m_level(l) {
}
expr_sort::~expr_sort() {}
// Expr Let
expr_let::expr_let(name const & n, expr const & t, expr const & v, expr const & b):
expr_composite(expr_kind::Let, ::lean::hash(v.hash(), b.hash()),
t.has_metavar() || v.has_metavar() || b.has_metavar(),
t.has_local() || v.has_local() || b.has_local(),
t.has_param_univ() || v.has_param_univ() || b.has_param_univ(),
std::max({get_depth(t), get_depth(v), get_depth(b)}) + 1,
std::max({get_free_var_range(t), dec(get_free_var_range(v)), dec(get_free_var_range(b))})),
m_name(n),
m_type(t),
m_value(v),
m_body(b) {
}
void expr_let::dealloc(buffer<expr_cell*> & todelete) {
dec_ref(m_body, todelete);
dec_ref(m_value, todelete);
dec_ref(m_type, todelete);
delete(this);
}
expr_let::~expr_let() {}
// Macro attachment
int macro::push_lua(lua_State *) const { return 0; } // NOLINT
void macro::display(std::ostream & out) const { out << get_name(); }
bool macro::operator==(macro const & other) const { return typeid(*this) == typeid(other); }
bool macro::operator<(macro const & other) const {
if (get_name() == other.get_name())
return lt(other);
else
return get_name() < other.get_name();
}
format macro::pp(formatter const &, options const &) const { return format(get_name()); }
bool macro::is_atomic_pp(bool, bool) const { return true; }
unsigned macro::hash() const { return get_name().hash(); }
typedef std::unordered_map<std::string, macro::reader> macro_readers;
static std::unique_ptr<macro_readers> g_macro_readers;
macro_readers & get_macro_readers() {
if (!g_macro_readers)
g_macro_readers.reset(new macro_readers());
return *(g_macro_readers.get());
}
void macro::register_deserializer(std::string const & k, macro::reader rd) {
macro_readers & readers = get_macro_readers();
lean_assert(readers.find(k) == readers.end());
readers[k] = rd;
}
static expr read_macro(deserializer & d) {
auto k = d.read_string();
macro_readers & readers = get_macro_readers();
auto it = readers.find(k);
lean_assert(it != readers.end());
return it->second(d);
}
expr_macro::expr_macro(macro * m):
expr_cell(expr_kind::Macro, m->hash(), false, false, false),
m_macro(m) {
m_macro->inc_ref();
}
expr_macro::~expr_macro() {
m_macro->dec_ref();
}
void expr_cell::dealloc() {
try {
buffer<expr_cell*> todo;
todo.push_back(this);
while (!todo.empty()) {
expr_cell * it = todo.back();
todo.pop_back();
lean_assert(it->get_rc() == 0);
switch (it->kind()) {
case expr_kind::Var: delete static_cast<expr_var*>(it); break;
case expr_kind::Macro: delete static_cast<expr_macro*>(it); break;
case expr_kind::Meta:
case expr_kind::Local: static_cast<expr_mlocal*>(it)->dealloc(todo); break;
case expr_kind::Constant: delete static_cast<expr_const*>(it); break;
case expr_kind::Sort: delete static_cast<expr_sort*>(it); break;
case expr_kind::App: static_cast<expr_app*>(it)->dealloc(todo); break;
case expr_kind::Lambda:
case expr_kind::Pi: static_cast<expr_binder*>(it)->dealloc(todo); break;
case expr_kind::Let: static_cast<expr_let*>(it)->dealloc(todo); break;
}
}
} catch (std::bad_alloc&) {
// We need this catch, because push_back may fail when expanding the buffer.
// In this case, we avoid the crash, and "accept" the memory leak.
}
}
// Auxiliary constructors
expr mk_app(expr const & f, unsigned num_args, expr const * args) {
expr r = f;
for (unsigned i = 0; i < num_args; i++)
r = mk_app(r, args[i]);
return r;
}
expr mk_app(unsigned num_args, expr const * args) {
lean_assert(num_args >= 2);
return mk_app(mk_app(args[0], args[1]), num_args - 2, args+2);
}
expr mk_rev_app(expr const & f, unsigned num_args, expr const * args) {
expr r = f;
unsigned i = num_args;
while (i > 0) {
--i;
r = mk_app(r, args[i]);
}
return r;
}
expr mk_rev_app(unsigned num_args, expr const * args) {
lean_assert(num_args >= 2);
return mk_rev_app(mk_app(args[num_args-1], args[num_args-2]), num_args-2, args);
}
static name g_default_var_name("a");
bool is_default_var_name(name const & n) { return n == g_default_var_name; }
expr mk_arrow(expr const & t, expr const & e) { return mk_pi(g_default_var_name, t, e); }
expr Bool = mk_sort(mk_level_zero());
expr Type = mk_sort(mk_level_one());
expr mk_Bool() { return Bool; }
expr mk_Type() { return Type; }
unsigned get_depth(expr const & e) {
switch (e.kind()) {
case expr_kind::Var: case expr_kind::Constant: case expr_kind::Sort:
case expr_kind::Meta: case expr_kind::Local: case expr_kind::Macro:
return 1;
case expr_kind::Lambda: case expr_kind::Pi:
case expr_kind::App: case expr_kind::Let:
return static_cast<expr_composite*>(e.raw())->m_depth;
}
lean_unreachable(); // LCOV_EXCL_LINE
}
unsigned get_free_var_range(expr const & e) {
switch (e.kind()) {
case expr_kind::Var:
return var_idx(e) + 1;
case expr_kind::Constant: case expr_kind::Sort: case expr_kind::Macro:
return 0;
case expr_kind::Meta: case expr_kind::Local:
return get_free_var_range(mlocal_type(e));
case expr_kind::Lambda: case expr_kind::Pi:
case expr_kind::App: case expr_kind::Let:
return static_cast<expr_composite*>(e.raw())->m_free_var_range;
}
lean_unreachable(); // LCOV_EXCL_LINE
}
bool operator==(expr const & a, expr const & b) { return expr_eq_fn()(a, b); }
expr update_app(expr const & e, expr const & new_fn, expr const & new_arg) {
if (!is_eqp(app_fn(e), new_fn) || !is_eqp(app_arg(e), new_arg))
return mk_app(new_fn, new_arg);
else
return e;
}
expr update_rev_app(expr const & e, unsigned num, expr const * new_args) {
expr const * it = &e;
for (unsigned i = 0; i < num - 1; i++) {
if (!is_app(*it) || !is_eqp(app_arg(*it), new_args[i]))
return mk_rev_app(num, new_args);
it = &app_fn(*it);
}
if (!is_eqp(*it, new_args[num - 1]))
return mk_rev_app(num, new_args);
return e;
}
expr update_binder(expr const & e, expr const & new_domain, expr const & new_body) {
if (!is_eqp(binder_domain(e), new_domain) || !is_eqp(binder_body(e), new_body))
return mk_binder(e.kind(), binder_name(e), new_domain, new_body);
else
return e;
}
expr update_let(expr const & e, expr const & new_type, expr const & new_val, expr const & new_body) {
if (!is_eqp(let_type(e), new_type) || !is_eqp(let_value(e), new_val) || !is_eqp(let_body(e), new_body))
return mk_let(let_name(e), new_type, new_val, new_body);
else
return e;
}
expr update_mlocal(expr const & e, expr const & new_type) {
if (!is_eqp(mlocal_type(e), new_type))
return mk_mlocal(is_metavar(e), mlocal_name(e), new_type);
else
return e;
}
expr update_sort(expr const & e, level const & new_level) {
if (!is_eqp(sort_level(e), new_level))
return mk_sort(new_level);
else
return e;
}
expr update_constant(expr const & e, levels const & new_levels) {
if (!is_eqp(const_level_params(e), new_levels))
return mk_constant(const_name(e), new_levels);
else
return e;
}
bool is_atomic(expr const & e) {
switch (e.kind()) {
case expr_kind::Constant: case expr_kind::Sort:
case expr_kind::Macro: case expr_kind::Var:
return true;
case expr_kind::App: case expr_kind::Let:
case expr_kind::Meta: case expr_kind::Local:
case expr_kind::Lambda: case expr_kind::Pi:
return false;
}
lean_unreachable(); // LCOV_EXCL_LINE
}
bool is_arrow(expr const & t) {
optional<bool> r = t.raw()->is_arrow();
if (r) {
return *r;
} else {
bool res = is_pi(t) && !has_free_var(binder_body(t), 0);
t.raw()->set_is_arrow(res);
return res;
}
}
expr copy(expr const & a) {
switch (a.kind()) {
case expr_kind::Var: return mk_var(var_idx(a));
case expr_kind::Constant: return mk_constant(const_name(a), const_level_params(a));
case expr_kind::Sort: return mk_sort(sort_level(a));
case expr_kind::Macro: return mk_macro(static_cast<expr_macro*>(a.raw())->m_macro);
case expr_kind::App: return mk_app(app_fn(a), app_arg(a));
case expr_kind::Lambda: return mk_lambda(binder_name(a), binder_domain(a), binder_body(a));
case expr_kind::Pi: return mk_pi(binder_name(a), binder_domain(a), binder_body(a));
case expr_kind::Let: return mk_let(let_name(a), let_type(a), let_value(a), let_body(a));
case expr_kind::Meta: return mk_metavar(mlocal_name(a), mlocal_type(a));
case expr_kind::Local: return mk_local(mlocal_name(a), mlocal_type(a));
}
lean_unreachable(); // LCOV_EXCL_LINE
}
class expr_serializer : public object_serializer<expr, expr_hash_alloc, expr_eqp> {
typedef object_serializer<expr, expr_hash_alloc, expr_eqp> super;
max_sharing_fn m_max_sharing_fn;
void write_core(expr const & a) {
auto k = a.kind();
super::write_core(a, static_cast<char>(k), [&]() {
serializer & s = get_owner();
switch (k) {
case expr_kind::Var:
s << var_idx(a);
break;
case expr_kind::Constant:
s << const_name(a) << const_level_params(a);
break;
case expr_kind::Sort:
s << sort_level(a);
break;
case expr_kind::Macro:
to_macro(a).write(s);
break;
case expr_kind::App:
write_core(app_fn(a)); write_core(app_arg(a));
break;
case expr_kind::Lambda: case expr_kind::Pi:
s << binder_name(a); write_core(binder_domain(a)); write_core(binder_body(a));
break;
case expr_kind::Let:
s << let_name(a); write_core(let_type(a)); write_core(let_value(a)); write_core(let_body(a));
break;
case expr_kind::Meta: case expr_kind::Local:
s << mlocal_name(a); write_core(mlocal_type(a));
break;
}
});
}
public:
void write(expr const & a) {
write_core(m_max_sharing_fn(a));
}
};
class expr_deserializer : public object_deserializer<expr> {
typedef object_deserializer<expr> super;
public:
expr read_binder(expr_kind k) {
deserializer & d = get_owner();
name n = read_name(d);
expr t = read();
return mk_binder(k, n, t, read());
}
expr read() {
return super::read_core([&](char c) {
deserializer & d = get_owner();
auto k = static_cast<expr_kind>(c);
switch (k) {
case expr_kind::Var:
return mk_var(d.read_unsigned());
case expr_kind::Constant: {
auto n = read_name(d);
return mk_constant(n, read_levels(d));
}
case expr_kind::Sort:
return mk_sort(read_level(d));
break;
case expr_kind::Macro:
return read_macro(d);
case expr_kind::App: {
expr f = read();
return mk_app(f, read());
}
case expr_kind::Lambda: case expr_kind::Pi:
return read_binder(k);
case expr_kind::Let: {
name n = read_name(d);
expr t = read();
expr v = read();
return mk_let(n, t, v, read());
}
case expr_kind::Meta: {
name n = read_name(d);
return mk_metavar(n, read());
}
case expr_kind::Local: {
name n = read_name(d);
return mk_local(n, read());
}}
throw_corrupted_file(); // LCOV_EXCL_LINE
});
}
};
struct expr_sd {
unsigned m_s_extid;
unsigned m_d_extid;
expr_sd() {
m_s_extid = serializer::register_extension([](){ return std::unique_ptr<serializer::extension>(new expr_serializer()); });
m_d_extid = deserializer::register_extension([](){ return std::unique_ptr<deserializer::extension>(new expr_deserializer()); });
}
};
static expr_sd g_expr_sd;
serializer & operator<<(serializer & s, expr const & n) {
s.get_extension<expr_serializer>(g_expr_sd.m_s_extid).write(n);
return s;
}
expr read_expr(deserializer & d) {
return d.get_extension<expr_deserializer>(g_expr_sd.m_d_extid).read();
}
}