793 lines
31 KiB
Text
793 lines
31 KiB
Text
/-
|
||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
We define the fiber sequence of a pointed map f : X →* Y. We mostly follow the proof in section 8.4
|
||
of the book.
|
||
|
||
PART 1:
|
||
We define a sequence fiber_sequence as in Definition 8.4.3.
|
||
It has types X(n) : Type*
|
||
X(0) := Y,
|
||
X(1) := X,
|
||
X(n+1) := fiber (f(n))
|
||
with functions f(n) : X(n+1) →* X(n)
|
||
f(0) := f
|
||
f(n+1) := point (f(n)) [this is the first projection]
|
||
We prove that this is an exact sequence.
|
||
Then we prove Lemma 8.4.3, by showing that X(n+3) ≃* Ω(X(n)) and that this equivalence sends
|
||
the pointed map f(n+3) to -Ω(f(n)), i.e. the composition of Ω(f(n)) with path inversion.
|
||
Using this equivalence we get a boundary_map : Ω(Y) → pfiber f.
|
||
|
||
PART 2:
|
||
Now we can define a new fiber sequence X'(n) : Type*, and here we slightly diverge from the book.
|
||
We define it as
|
||
X'(0) := Y,
|
||
X'(1) := X,
|
||
X'(2) := fiber f
|
||
X'(n+3) := Ω(X'(n))
|
||
with maps f'(n) : X'(n+1) →* X'(n)
|
||
f'(0) := f
|
||
f'(1) := point f
|
||
f'(2) := boundary_map
|
||
f'(n+3) := Ω(f'(n))
|
||
|
||
This sequence is not equivalent to the previous sequence. The difference is in the signs.
|
||
The sequence f has negative signs (i.e. is composed with the inverse maps) for n ≡ 3, 4, 5 mod 6.
|
||
This sign information is captured by e : X'(n) ≃* X'(n) such that
|
||
e(k) := 1 for k = 0,1,2,3
|
||
e(k+3) := Ω(e(k)) ∘ (-)⁻¹ for k > 0
|
||
|
||
Now the sequence (X', f' ∘ e) is equivalent to (X, f), Hence (X', f' ∘ e) is an exact sequence.
|
||
We then prove that (X', f') is an exact sequence by using that there are other equivalences
|
||
eₗ and eᵣ such that
|
||
f' = eᵣ ∘ f' ∘ e
|
||
f' ∘ eₗ = e ∘ f'.
|
||
(this fact is type_chain_complex_cancel_aut and is_exact_at_t_cancel_aut in the file chain_complex)
|
||
eₗ and eᵣ are almost the same as e, except that the places where the inverse is taken is
|
||
slightly shifted:
|
||
eᵣ = (-)⁻¹ for n ≡ 3, 4, 5 mod 6 and eᵣ = 1 otherwise
|
||
e = (-)⁻¹ for n ≡ 4, 5, 6 mod 6 (except for n = 0) and e = 1 otherwise
|
||
eₗ = (-)⁻¹ for n ≡ 5, 6, 7 mod 6 (except for n = 0, 1) and eₗ = 1 otherwise
|
||
|
||
PART 3:
|
||
We change the type over which the sequence of types and maps are indexed from ℕ to ℕ × 3
|
||
(where 3 is the finite type with 3 elements). The reason is that we have that X'(3n) = Ωⁿ(Y), but
|
||
this equality is not definitionally true. Hence we cannot even state whether f'(3n) = Ωⁿ(f) without
|
||
using transports. This gets ugly. However, if we use as index type ℕ × 3, we can do this. We can
|
||
define
|
||
Y : ℕ × 3 → Type* as
|
||
Y(n, 0) := Ωⁿ(Y)
|
||
Y(n, 1) := Ωⁿ(X)
|
||
Y(n, 2) := Ωⁿ(fiber f)
|
||
with maps g(n) : Y(S n) →* Y(n) (where the successor is defined in the obvious way)
|
||
g(n, 0) := Ωⁿ(f)
|
||
g(n, 1) := Ωⁿ(point f)
|
||
g(n, 2) := Ωⁿ(boundary_map) ∘ cast
|
||
|
||
Here "cast" is the transport over the equality Ωⁿ⁺¹(Y) = Ωⁿ(Ω(Y)). We show that the sequence
|
||
(ℕ, X', f') is equivalent to (ℕ × 3, Y, g).
|
||
|
||
PART 4:
|
||
We get the long exact sequence of homotopy groups by taking the set-truncation of (Y, g).
|
||
-/
|
||
|
||
import .chain_complex algebra.homotopy_group eq2
|
||
|
||
open eq pointed sigma fiber equiv is_equiv is_trunc nat trunc algebra function
|
||
/--------------
|
||
PART 1
|
||
--------------/
|
||
|
||
namespace chain_complex
|
||
section
|
||
open sigma.ops
|
||
|
||
definition fiber_sequence_helper [constructor] (v : Σ(X Y : Type*), X →* Y)
|
||
: Σ(Z X : Type*), Z →* X :=
|
||
⟨pfiber v.2.2, v.1, ppoint v.2.2⟩
|
||
|
||
definition fiber_sequence_helpern (v : Σ(X Y : Type*), X →* Y) (n : ℕ)
|
||
: Σ(Z X : Type*), Z →* X :=
|
||
iterate fiber_sequence_helper n v
|
||
|
||
end
|
||
|
||
section
|
||
open sigma.ops
|
||
universe variable u
|
||
parameters {X Y : pType.{u}} (f : X →* Y)
|
||
include f
|
||
|
||
definition fiber_sequence_carrier (n : ℕ) : Type* :=
|
||
(fiber_sequence_helpern ⟨X, Y, f⟩ n).2.1
|
||
|
||
definition fiber_sequence_fun (n : ℕ)
|
||
: fiber_sequence_carrier (n + 1) →* fiber_sequence_carrier n :=
|
||
(fiber_sequence_helpern ⟨X, Y, f⟩ n).2.2
|
||
|
||
/- Definition 8.4.3 -/
|
||
definition fiber_sequence : type_chain_complex.{0 u} +ℕ :=
|
||
begin
|
||
fconstructor,
|
||
{ exact fiber_sequence_carrier },
|
||
{ exact fiber_sequence_fun },
|
||
{ intro n x, cases n with n,
|
||
{ exact point_eq x },
|
||
{ exact point_eq x }}
|
||
end
|
||
|
||
definition is_exact_fiber_sequence : is_exact_t fiber_sequence :=
|
||
λn x p, fiber.mk (fiber.mk x p) rfl
|
||
|
||
/- (generalization of) Lemma 8.4.4(i)(ii) -/
|
||
definition fiber_sequence_carrier_pequiv (n : ℕ)
|
||
: fiber_sequence_carrier (n+3) ≃* Ω(fiber_sequence_carrier n) :=
|
||
pfiber_ppoint_pequiv (fiber_sequence_fun n)
|
||
|
||
definition fiber_sequence_carrier_pequiv_eq (n : ℕ)
|
||
(x : fiber_sequence_carrier (n+1)) (p : fiber_sequence_fun n x = pt)
|
||
(q : fiber_sequence_fun (n+1) (fiber.mk x p) = pt)
|
||
: fiber_sequence_carrier_pequiv n (fiber.mk (fiber.mk x p) q)
|
||
= !respect_pt⁻¹ ⬝ ap (fiber_sequence_fun n) q⁻¹ ⬝ p :=
|
||
fiber_ppoint_equiv_eq p q
|
||
|
||
definition fiber_sequence_carrier_pequiv_inv_eq (n : ℕ)
|
||
(p : Ω(fiber_sequence_carrier n)) : (fiber_sequence_carrier_pequiv n)⁻¹ᵉ* p =
|
||
fiber.mk (fiber.mk pt (respect_pt (fiber_sequence_fun n) ⬝ p)) idp :=
|
||
fiber_ppoint_equiv_inv_eq (fiber_sequence_fun n) p
|
||
|
||
/- TODO: prove naturality of pfiber_ppoint_pequiv in general -/
|
||
|
||
/- Lemma 8.4.4(iii) -/
|
||
definition fiber_sequence_fun_eq_helper (n : ℕ)
|
||
(p : Ω(fiber_sequence_carrier (n + 1))) :
|
||
fiber_sequence_carrier_pequiv n
|
||
(fiber_sequence_fun (n + 3)
|
||
((fiber_sequence_carrier_pequiv (n + 1))⁻¹ᵉ* p)) =
|
||
Ω→ (fiber_sequence_fun n) p⁻¹ :=
|
||
begin
|
||
refine ap (λx, fiber_sequence_carrier_pequiv n (fiber_sequence_fun (n + 3) x))
|
||
(fiber_sequence_carrier_pequiv_inv_eq (n+1) p) ⬝ _,
|
||
/- the following three lines are rewriting some reflexivities: -/
|
||
-- replace (n + 3) with (n + 2 + 1),
|
||
-- refine ap (fiber_sequence_carrier_pequiv n)
|
||
-- (fiber_sequence_fun_eq1 (n+2) _ idp) ⬝ _,
|
||
refine fiber_sequence_carrier_pequiv_eq n pt (respect_pt (fiber_sequence_fun n)) _ ⬝ _,
|
||
esimp,
|
||
apply whisker_right,
|
||
apply whisker_left,
|
||
apply ap02, apply inverse2, apply idp_con,
|
||
end
|
||
|
||
theorem fiber_sequence_carrier_pequiv_eq_point_eq_idp (n : ℕ) :
|
||
fiber_sequence_carrier_pequiv_eq n
|
||
(Point (fiber_sequence_carrier (n+1)))
|
||
(respect_pt (fiber_sequence_fun n))
|
||
(respect_pt (fiber_sequence_fun (n + 1))) = idp :=
|
||
begin
|
||
apply con_inv_eq_idp,
|
||
refine ap (λx, whisker_left _ (_ ⬝ x)) _ ⬝ _,
|
||
{ reflexivity},
|
||
{ reflexivity},
|
||
refine ap (whisker_left _)
|
||
(eq_transport_Fl_idp_left (fiber_sequence_fun n)
|
||
(respect_pt (fiber_sequence_fun n))) ⬝ _,
|
||
apply whisker_left_idp_con_eq_assoc
|
||
end
|
||
|
||
theorem fiber_sequence_fun_phomotopy_helper (n : ℕ) :
|
||
(fiber_sequence_carrier_pequiv n ∘*
|
||
fiber_sequence_fun (n + 3)) ∘*
|
||
(fiber_sequence_carrier_pequiv (n + 1))⁻¹ᵉ* ~*
|
||
Ω→ (fiber_sequence_fun n) ∘* pinverse :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ exact chain_complex.fiber_sequence_fun_eq_helper f n},
|
||
{ esimp, rewrite [idp_con], refine _ ⬝ whisker_left _ !idp_con⁻¹,
|
||
apply whisker_right,
|
||
apply whisker_left,
|
||
exact chain_complex.fiber_sequence_carrier_pequiv_eq_point_eq_idp f n}
|
||
end
|
||
|
||
theorem fiber_sequence_fun_eq (n : ℕ) : Π(x : fiber_sequence_carrier (n + 4)),
|
||
fiber_sequence_carrier_pequiv n (fiber_sequence_fun (n + 3) x) =
|
||
Ω→ (fiber_sequence_fun n) (fiber_sequence_carrier_pequiv (n + 1) x)⁻¹ :=
|
||
begin
|
||
refine @(homotopy_of_inv_homotopy_pre (fiber_sequence_carrier_pequiv (n + 1)))
|
||
!pequiv.to_is_equiv _ _ _,
|
||
apply fiber_sequence_fun_eq_helper n
|
||
end
|
||
|
||
theorem fiber_sequence_fun_phomotopy (n : ℕ) :
|
||
fiber_sequence_carrier_pequiv n ∘*
|
||
fiber_sequence_fun (n + 3) ~*
|
||
(Ω→ (fiber_sequence_fun n) ∘* pinverse) ∘* fiber_sequence_carrier_pequiv (n + 1) :=
|
||
begin
|
||
apply phomotopy_of_pinv_right_phomotopy,
|
||
apply fiber_sequence_fun_phomotopy_helper
|
||
end
|
||
|
||
definition boundary_map : Ω Y →* pfiber f :=
|
||
fiber_sequence_fun 2 ∘* (fiber_sequence_carrier_pequiv 0)⁻¹ᵉ*
|
||
|
||
/--------------
|
||
PART 2
|
||
--------------/
|
||
|
||
/- Now we are ready to define the long exact sequence of loop spaces.
|
||
First we define its carrier -/
|
||
definition loop_spaces : ℕ → Type*
|
||
| 0 := Y
|
||
| 1 := X
|
||
| 2 := pfiber f
|
||
| (k+3) := Ω (loop_spaces k)
|
||
|
||
/- The maps between the homotopy groups -/
|
||
definition loop_spaces_fun : Π(n : ℕ), loop_spaces (n+1) →* loop_spaces n
|
||
| 0 := proof f qed
|
||
| 1 := proof ppoint f qed
|
||
| 2 := proof boundary_map qed
|
||
| (k+3) := proof Ω→ (loop_spaces_fun k) qed
|
||
|
||
definition loop_spaces_fun_add3 [unfold_full] (n : ℕ) :
|
||
loop_spaces_fun (n + 3) = Ω→ (loop_spaces_fun n) :=
|
||
idp
|
||
|
||
definition fiber_sequence_pequiv_loop_spaces :
|
||
Πn, fiber_sequence_carrier n ≃* loop_spaces n
|
||
| 0 := by reflexivity
|
||
| 1 := by reflexivity
|
||
| 2 := by reflexivity
|
||
| (k+3) :=
|
||
begin
|
||
refine fiber_sequence_carrier_pequiv k ⬝e* _,
|
||
apply loop_pequiv_loop,
|
||
exact fiber_sequence_pequiv_loop_spaces k
|
||
end
|
||
|
||
definition fiber_sequence_pequiv_loop_spaces_add3 (n : ℕ)
|
||
: fiber_sequence_pequiv_loop_spaces (n + 3) =
|
||
Ω→ (fiber_sequence_pequiv_loop_spaces n) ∘* fiber_sequence_carrier_pequiv n :=
|
||
by reflexivity
|
||
|
||
definition fiber_sequence_pequiv_loop_spaces_3_phomotopy
|
||
: fiber_sequence_pequiv_loop_spaces 3 ~* fiber_sequence_carrier_pequiv 0 :=
|
||
begin
|
||
refine pwhisker_right _ ap1_pid ⬝* _,
|
||
apply pid_pcompose
|
||
end
|
||
|
||
definition pid_or_pinverse : Π(n : ℕ), loop_spaces n ≃* loop_spaces n
|
||
| 0 := pequiv.rfl
|
||
| 1 := pequiv.rfl
|
||
| 2 := pequiv.rfl
|
||
| 3 := pequiv.rfl
|
||
| (k+4) := !pequiv_pinverse ⬝e* loop_pequiv_loop (pid_or_pinverse (k+1))
|
||
|
||
definition pid_or_pinverse_add4 (n : ℕ)
|
||
: pid_or_pinverse (n + 4) = !pequiv_pinverse ⬝e* loop_pequiv_loop (pid_or_pinverse (n + 1)) :=
|
||
by reflexivity
|
||
|
||
definition pid_or_pinverse_add4_rev (n : ℕ) :
|
||
pid_or_pinverse (n + 4) ~* pinverse ∘* Ω→(pid_or_pinverse (n + 1)) :=
|
||
!ap1_pcompose_pinverse
|
||
|
||
theorem fiber_sequence_phomotopy_loop_spaces : Π(n : ℕ),
|
||
fiber_sequence_pequiv_loop_spaces n ∘* fiber_sequence_fun n ~*
|
||
(loop_spaces_fun n ∘* pid_or_pinverse (n + 1)) ∘* fiber_sequence_pequiv_loop_spaces (n + 1)
|
||
| 0 := proof proof phomotopy.rfl qed ⬝* pwhisker_right _ !pcompose_pid⁻¹* qed
|
||
| 1 := by reflexivity
|
||
| 2 :=
|
||
begin
|
||
refine !pid_pcompose ⬝* _,
|
||
replace loop_spaces_fun 2 with boundary_map,
|
||
refine _ ⬝* pwhisker_left _ fiber_sequence_pequiv_loop_spaces_3_phomotopy⁻¹*,
|
||
apply phomotopy_of_pinv_right_phomotopy,
|
||
exact !pcompose_pid⁻¹*
|
||
end
|
||
| (k+3) :=
|
||
begin
|
||
replace (k + 3 + 1) with (k + 1 + 3),
|
||
rewrite [fiber_sequence_pequiv_loop_spaces_add3 k,
|
||
fiber_sequence_pequiv_loop_spaces_add3 (k+1)],
|
||
refine !passoc ⬝* _,
|
||
refine pwhisker_left _ (fiber_sequence_fun_phomotopy k) ⬝* _,
|
||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
||
apply pwhisker_right,
|
||
replace (k + 1 + 3) with (k + 4),
|
||
xrewrite [loop_spaces_fun_add3, pid_or_pinverse_add4, to_pmap_pequiv_trans],
|
||
refine _ ⬝* !passoc⁻¹*,
|
||
refine _ ⬝* pwhisker_left _ !passoc⁻¹*,
|
||
refine _ ⬝* pwhisker_left _ (pwhisker_left _ !ap1_pcompose_pinverse),
|
||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc ⬝* !passoc,
|
||
apply pwhisker_right,
|
||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose ⬝* pwhisker_right _ !ap1_pcompose,
|
||
apply ap1_phomotopy,
|
||
exact fiber_sequence_phomotopy_loop_spaces k
|
||
end
|
||
|
||
definition pid_or_pinverse_right : Π(n : ℕ), loop_spaces n →* loop_spaces n
|
||
| 0 := !pid
|
||
| 1 := !pid
|
||
| 2 := !pid
|
||
| (k+3) := Ω→(pid_or_pinverse_right k) ∘* pinverse
|
||
|
||
definition pid_or_pinverse_left : Π(n : ℕ), loop_spaces n →* loop_spaces n
|
||
| 0 := pequiv.rfl
|
||
| 1 := pequiv.rfl
|
||
| 2 := pequiv.rfl
|
||
| 3 := pequiv.rfl
|
||
| 4 := pequiv.rfl
|
||
| (k+5) := Ω→(pid_or_pinverse_left (k+2)) ∘* pinverse
|
||
|
||
definition pid_or_pinverse_right_add3 (n : ℕ)
|
||
: pid_or_pinverse_right (n + 3) = Ω→(pid_or_pinverse_right n) ∘* pinverse :=
|
||
by reflexivity
|
||
|
||
definition pid_or_pinverse_left_add5 (n : ℕ)
|
||
: pid_or_pinverse_left (n + 5) = Ω→(pid_or_pinverse_left (n+2)) ∘* pinverse :=
|
||
by reflexivity
|
||
|
||
theorem pid_or_pinverse_commute_right : Π(n : ℕ),
|
||
loop_spaces_fun n ~* pid_or_pinverse_right n ∘* loop_spaces_fun n ∘* pid_or_pinverse (n + 1)
|
||
| 0 := proof !pcompose_pid⁻¹* ⬝* !pid_pcompose⁻¹* qed
|
||
| 1 := proof !pcompose_pid⁻¹* ⬝* !pid_pcompose⁻¹* qed
|
||
| 2 := proof !pcompose_pid⁻¹* ⬝* !pid_pcompose⁻¹* qed
|
||
| (k+3) :=
|
||
begin
|
||
replace (k + 3 + 1) with (k + 4),
|
||
rewrite [pid_or_pinverse_right_add3, loop_spaces_fun_add3],
|
||
refine _ ⬝* pwhisker_left _ (pwhisker_left _ !pid_or_pinverse_add4_rev⁻¹*),
|
||
refine ap1_phomotopy (pid_or_pinverse_commute_right k) ⬝* _,
|
||
refine !ap1_pcompose ⬝* _ ⬝* !passoc⁻¹*,
|
||
apply pwhisker_left,
|
||
refine !ap1_pcompose ⬝* _ ⬝* !passoc ⬝* !passoc,
|
||
apply pwhisker_right,
|
||
refine _ ⬝* pwhisker_right _ !ap1_pcompose_pinverse,
|
||
refine _ ⬝* !passoc⁻¹*,
|
||
refine !pcompose_pid⁻¹* ⬝* pwhisker_left _ _,
|
||
symmetry, apply pinverse_pinverse
|
||
end
|
||
|
||
theorem pid_or_pinverse_commute_left : Π(n : ℕ),
|
||
loop_spaces_fun n ∘* pid_or_pinverse_left (n + 1) ~* pid_or_pinverse n ∘* loop_spaces_fun n
|
||
| 0 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed
|
||
| 1 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed
|
||
| 2 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed
|
||
| 3 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed
|
||
| (k+4) :=
|
||
begin
|
||
replace (k + 4 + 1) with (k + 5),
|
||
rewrite [pid_or_pinverse_left_add5, pid_or_pinverse_add4],
|
||
replace (k + 4) with (k + 1 + 3),
|
||
rewrite [loop_spaces_fun_add3],
|
||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc⁻¹*,
|
||
refine _ ⬝* pwhisker_left _ !ap1_pcompose_pinverse,
|
||
refine _ ⬝* !passoc,
|
||
apply pwhisker_right,
|
||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose,
|
||
exact ap1_phomotopy (pid_or_pinverse_commute_left (k+1))
|
||
end
|
||
|
||
definition LES_of_loop_spaces' [constructor] : type_chain_complex +ℕ :=
|
||
transfer_type_chain_complex
|
||
fiber_sequence
|
||
(λn, loop_spaces_fun n ∘* pid_or_pinverse (n + 1))
|
||
fiber_sequence_pequiv_loop_spaces
|
||
fiber_sequence_phomotopy_loop_spaces
|
||
|
||
definition LES_of_loop_spaces [constructor] : type_chain_complex +ℕ :=
|
||
type_chain_complex_cancel_aut
|
||
LES_of_loop_spaces'
|
||
loop_spaces_fun
|
||
pid_or_pinverse
|
||
pid_or_pinverse_right
|
||
(λn x, idp)
|
||
pid_or_pinverse_commute_right
|
||
|
||
definition is_exact_LES_of_loop_spaces : is_exact_t LES_of_loop_spaces :=
|
||
begin
|
||
intro n,
|
||
refine is_exact_at_t_cancel_aut n pid_or_pinverse_left _ _ pid_or_pinverse_commute_left _,
|
||
apply is_exact_at_t_transfer,
|
||
apply is_exact_fiber_sequence
|
||
end
|
||
|
||
open prod succ_str fin
|
||
|
||
/--------------
|
||
PART 3
|
||
--------------/
|
||
|
||
definition fibration_sequence [unfold 4] : fin 3 → Type*
|
||
| (fin.mk 0 H) := Y
|
||
| (fin.mk 1 H) := X
|
||
| (fin.mk 2 H) := pfiber f
|
||
| (fin.mk (n+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition loop_spaces2 [reducible] : +3ℕ → Type*
|
||
| (n, m) := Ω[n] (fibration_sequence m)
|
||
|
||
definition loop_spaces2_add1 (n : ℕ) : Π(x : fin 3),
|
||
loop_spaces2 (n+1, x) = Ω (loop_spaces2 (n, x))
|
||
| (fin.mk 0 H) := by reflexivity
|
||
| (fin.mk 1 H) := by reflexivity
|
||
| (fin.mk 2 H) := by reflexivity
|
||
| (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition loop_spaces_fun2 : Π(n : +3ℕ), loop_spaces2 (S n) →* loop_spaces2 n
|
||
| (n, fin.mk 0 H) := proof Ω→[n] f qed
|
||
| (n, fin.mk 1 H) := proof Ω→[n] (ppoint f) qed
|
||
| (n, fin.mk 2 H) := proof Ω→[n] boundary_map ∘* loopn_succ_in Y n qed
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition loop_spaces_fun2_add1_0 (n : ℕ) (H : 0 < succ 2)
|
||
: loop_spaces_fun2 (n+1, fin.mk 0 H) ~*
|
||
cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 0 H)) :=
|
||
by reflexivity
|
||
|
||
definition loop_spaces_fun2_add1_1 (n : ℕ) (H : 1 < succ 2)
|
||
: loop_spaces_fun2 (n+1, fin.mk 1 H) ~*
|
||
cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 1 H)) :=
|
||
by reflexivity
|
||
|
||
definition loop_spaces_fun2_add1_2 (n : ℕ) (H : 2 < succ 2)
|
||
: loop_spaces_fun2 (n+1, fin.mk 2 H) ~*
|
||
cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 2 H)) :=
|
||
proof !ap1_pcompose⁻¹* qed
|
||
|
||
definition nat_of_str [unfold 2] [reducible] {n : ℕ} : ℕ × fin (succ n) → ℕ :=
|
||
λx, succ n * pr1 x + val (pr2 x)
|
||
|
||
definition str_of_nat {n : ℕ} : ℕ → ℕ × fin (succ n) :=
|
||
λm, (m / (succ n), mk_mod n m)
|
||
|
||
definition nat_of_str_3S [unfold 2] [reducible]
|
||
: Π(x : stratified +ℕ 2), nat_of_str x + 1 = nat_of_str (@S (stratified +ℕ 2) x)
|
||
| (n, fin.mk 0 H) := by reflexivity
|
||
| (n, fin.mk 1 H) := by reflexivity
|
||
| (n, fin.mk 2 H) := by reflexivity
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition fin_prod_nat_equiv_nat [constructor] (n : ℕ) : ℕ × fin (succ n) ≃ ℕ :=
|
||
equiv.MK nat_of_str str_of_nat
|
||
abstract begin
|
||
intro m, unfold [nat_of_str, str_of_nat, mk_mod],
|
||
refine _ ⬝ (eq_div_mul_add_mod m (succ n))⁻¹,
|
||
rewrite [mul.comm]
|
||
end end
|
||
abstract begin
|
||
intro x, cases x with m k,
|
||
cases k with k H,
|
||
apply prod_eq: esimp [str_of_nat],
|
||
{ rewrite [add.comm, add_mul_div_self_left _ _ (!zero_lt_succ), ▸*,
|
||
div_eq_zero_of_lt H, zero_add]},
|
||
{ apply eq_of_veq, esimp [mk_mod],
|
||
rewrite [add.comm, add_mul_mod_self_left, ▸*, mod_eq_of_lt H]}
|
||
end end
|
||
|
||
/-
|
||
note: in the following theorem the (n+1) case is 3 times the same,
|
||
so maybe this can be simplified
|
||
-/
|
||
definition loop_spaces2_pequiv' : Π(n : ℕ) (x : fin (nat.succ 2)),
|
||
loop_spaces (nat_of_str (n, x)) ≃* loop_spaces2 (n, x)
|
||
| 0 (fin.mk 0 H) := by reflexivity
|
||
| 0 (fin.mk 1 H) := by reflexivity
|
||
| 0 (fin.mk 2 H) := by reflexivity
|
||
| (n+1) (fin.mk 0 H) :=
|
||
begin
|
||
apply loop_pequiv_loop,
|
||
rexact loop_spaces2_pequiv' n (fin.mk 0 H)
|
||
end
|
||
| (n+1) (fin.mk 1 H) :=
|
||
begin
|
||
apply loop_pequiv_loop,
|
||
rexact loop_spaces2_pequiv' n (fin.mk 1 H)
|
||
end
|
||
| (n+1) (fin.mk 2 H) :=
|
||
begin
|
||
apply loop_pequiv_loop,
|
||
rexact loop_spaces2_pequiv' n (fin.mk 2 H)
|
||
end
|
||
| n (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition loop_spaces2_pequiv : Π(x : +3ℕ),
|
||
loop_spaces (nat_of_str x) ≃* loop_spaces2 x
|
||
| (n, x) := loop_spaces2_pequiv' n x
|
||
|
||
local attribute loop_pequiv_loop [reducible]
|
||
|
||
/- all cases where n>0 are basically the same -/
|
||
definition loop_spaces_fun2_phomotopy (x : +3ℕ) :
|
||
loop_spaces2_pequiv x ∘* loop_spaces_fun (nat_of_str x) ~*
|
||
(loop_spaces_fun2 x ∘* loop_spaces2_pequiv (S x))
|
||
∘* pcast (ap (loop_spaces) (nat_of_str_3S x)) :=
|
||
begin
|
||
cases x with n x, cases x with k H,
|
||
do 3 (cases k with k; rotate 1),
|
||
{ /-k≥3-/ exfalso, apply lt_le_antisymm H, apply le_add_left},
|
||
{ /-k=0-/
|
||
induction n with n IH,
|
||
{ refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹* ⬝* !pcompose_pid⁻¹*,
|
||
reflexivity},
|
||
{ refine _ ⬝* !pcompose_pid⁻¹*,
|
||
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_0⁻¹*,
|
||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, apply ap1_phomotopy,
|
||
exact IH ⬝* !pcompose_pid}},
|
||
{ /-k=1-/
|
||
induction n with n IH,
|
||
{ refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹* ⬝* !pcompose_pid⁻¹*,
|
||
reflexivity},
|
||
{ refine _ ⬝* !pcompose_pid⁻¹*,
|
||
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_1⁻¹*,
|
||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, apply ap1_phomotopy,
|
||
exact IH ⬝* !pcompose_pid}},
|
||
{ /-k=2-/
|
||
induction n with n IH,
|
||
{ refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹*,
|
||
refine !pcompose_pid⁻¹* ⬝* pconcat2 _ _,
|
||
{ exact (pcompose_pid (chain_complex.boundary_map f))⁻¹*},
|
||
{ refine !loop_pequiv_loop_rfl⁻¹* }},
|
||
{ refine _ ⬝* !pcompose_pid⁻¹*,
|
||
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_2⁻¹*,
|
||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, apply ap1_phomotopy,
|
||
exact IH ⬝* !pcompose_pid}},
|
||
end
|
||
|
||
definition LES_of_loop_spaces2 [constructor] : type_chain_complex +3ℕ :=
|
||
transfer_type_chain_complex2
|
||
LES_of_loop_spaces
|
||
!fin_prod_nat_equiv_nat
|
||
nat_of_str_3S
|
||
@loop_spaces_fun2
|
||
@loop_spaces2_pequiv
|
||
begin
|
||
intro m x,
|
||
refine loop_spaces_fun2_phomotopy m x ⬝ _,
|
||
apply ap (loop_spaces_fun2 m), apply ap (loop_spaces2_pequiv (S m)),
|
||
esimp, exact ap010 cast !ap_compose⁻¹ x
|
||
end
|
||
|
||
definition is_exact_LES_of_loop_spaces2 : is_exact_t LES_of_loop_spaces2 :=
|
||
begin
|
||
intro n,
|
||
apply is_exact_at_t_transfer2,
|
||
apply is_exact_LES_of_loop_spaces
|
||
end
|
||
|
||
definition LES_of_homotopy_groups' [constructor] : chain_complex +3ℕ :=
|
||
trunc_chain_complex LES_of_loop_spaces2
|
||
|
||
/--------------
|
||
PART 4
|
||
--------------/
|
||
open prod.ops
|
||
|
||
definition homotopy_groups [reducible] : +3ℕ → Set* :=
|
||
λnm, π[nm.1] (fibration_sequence nm.2)
|
||
|
||
definition homotopy_groups_pequiv_loop_spaces2 [reducible]
|
||
: Π(n : +3ℕ), ptrunc 0 (loop_spaces2 n) ≃* homotopy_groups n
|
||
| (n, fin.mk 0 H) := by reflexivity
|
||
| (n, fin.mk 1 H) := by reflexivity
|
||
| (n, fin.mk 2 H) := by reflexivity
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition homotopy_groups_fun : Π(n : +3ℕ), homotopy_groups (S n) →* homotopy_groups n
|
||
| (n, fin.mk 0 H) := proof π→[n] f qed
|
||
| (n, fin.mk 1 H) := proof π→[n] (ppoint f) qed
|
||
| (n, fin.mk 2 H) :=
|
||
proof π→[n] boundary_map ∘* homotopy_group_succ_in Y n qed
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition homotopy_groups_fun_phomotopy_loop_spaces_fun2 [reducible]
|
||
: Π(n : +3ℕ), homotopy_groups_pequiv_loop_spaces2 n ∘* ptrunc_functor 0 (loop_spaces_fun2 n) ~*
|
||
homotopy_groups_fun n ∘* homotopy_groups_pequiv_loop_spaces2 (S n)
|
||
| (n, fin.mk 0 H) := by reflexivity
|
||
| (n, fin.mk 1 H) := by reflexivity
|
||
| (n, fin.mk 2 H) :=
|
||
begin
|
||
refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹*,
|
||
refine !ptrunc_functor_pcompose
|
||
end
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition LES_of_homotopy_groups [constructor] : chain_complex +3ℕ :=
|
||
transfer_chain_complex
|
||
LES_of_homotopy_groups'
|
||
homotopy_groups_fun
|
||
homotopy_groups_pequiv_loop_spaces2
|
||
homotopy_groups_fun_phomotopy_loop_spaces_fun2
|
||
|
||
definition is_exact_LES_of_homotopy_groups : is_exact LES_of_homotopy_groups :=
|
||
begin
|
||
intro n,
|
||
apply is_exact_at_transfer,
|
||
apply is_exact_at_trunc,
|
||
apply is_exact_LES_of_loop_spaces2
|
||
end
|
||
|
||
variable (n : ℕ)
|
||
|
||
/- the carrier of the fiber sequence is definitionally what we want (as pointed sets) -/
|
||
example : LES_of_homotopy_groups (str_of_nat 6) = π[2] Y :> Set* := by reflexivity
|
||
example : LES_of_homotopy_groups (str_of_nat 7) = π[2] X :> Set* := by reflexivity
|
||
example : LES_of_homotopy_groups (str_of_nat 8) = π[2] (pfiber f) :> Set* := by reflexivity
|
||
example : LES_of_homotopy_groups (str_of_nat 9) = π[3] Y :> Set* := by reflexivity
|
||
example : LES_of_homotopy_groups (str_of_nat 10) = π[3] X :> Set* := by reflexivity
|
||
example : LES_of_homotopy_groups (str_of_nat 11) = π[3] (pfiber f) :> Set* := by reflexivity
|
||
|
||
definition LES_of_homotopy_groups_0 : LES_of_homotopy_groups (n, 0) = π[n] Y :=
|
||
by reflexivity
|
||
definition LES_of_homotopy_groups_1 : LES_of_homotopy_groups (n, 1) = π[n] X :=
|
||
by reflexivity
|
||
definition LES_of_homotopy_groups_2 : LES_of_homotopy_groups (n, 2) = π[n] (pfiber f) :=
|
||
by reflexivity
|
||
|
||
/-
|
||
the functions of the fiber sequence is definitionally what we want (as pointed function).
|
||
-/
|
||
|
||
definition LES_of_homotopy_groups_fun_0 :
|
||
cc_to_fn LES_of_homotopy_groups (n, 0) = π→[n] f :=
|
||
by reflexivity
|
||
definition LES_of_homotopy_groups_fun_1 :
|
||
cc_to_fn LES_of_homotopy_groups (n, 1) = π→[n] (ppoint f) :=
|
||
by reflexivity
|
||
definition LES_of_homotopy_groups_fun_2 : cc_to_fn LES_of_homotopy_groups (n, 2) =
|
||
π→[n] boundary_map ∘* homotopy_group_succ_in Y n :=
|
||
by reflexivity
|
||
|
||
open group
|
||
|
||
definition group_LES_of_homotopy_groups (n : ℕ) [is_succ n] (x : fin (succ 2)) :
|
||
group (LES_of_homotopy_groups (n, x)) :=
|
||
group_homotopy_group n (fibration_sequence x)
|
||
|
||
definition pgroup_LES_of_homotopy_groups (n : ℕ) [H : is_succ n] (x : fin (succ 2)) :
|
||
pgroup (LES_of_homotopy_groups (n, x)) :=
|
||
by induction H with n; exact @pgroup_of_group _ (group_LES_of_homotopy_groups (n+1) x) idp
|
||
|
||
definition ab_group_LES_of_homotopy_groups (n : ℕ) [is_at_least_two n] (x : fin (succ 2)) :
|
||
ab_group (LES_of_homotopy_groups (n, x)) :=
|
||
ab_group_homotopy_group n (fibration_sequence x)
|
||
|
||
definition Group_LES_of_homotopy_groups (n : +3ℕ) : Group.{u} :=
|
||
πg[n.1+1] (fibration_sequence n.2)
|
||
|
||
definition AbGroup_LES_of_homotopy_groups (n : +3ℕ) : AbGroup.{u} :=
|
||
πag[n.1+2] (fibration_sequence n.2)
|
||
|
||
definition homomorphism_LES_of_homotopy_groups_fun : Π(k : +3ℕ),
|
||
Group_LES_of_homotopy_groups (S k) →g Group_LES_of_homotopy_groups k
|
||
| (k, fin.mk 0 H) :=
|
||
proof homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 0))
|
||
(homotopy_group_functor_mul _ _) qed
|
||
| (k, fin.mk 1 H) :=
|
||
proof homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 1))
|
||
(homotopy_group_functor_mul _ _) qed
|
||
| (k, fin.mk 2 H) :=
|
||
begin
|
||
apply homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 2)),
|
||
exact abstract begin rewrite [LES_of_homotopy_groups_fun_2],
|
||
refine homomorphism.struct ((π→g[k+1] boundary_map) ∘g ghomotopy_group_succ_in Y k),
|
||
end end
|
||
end
|
||
| (k, fin.mk (l+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition LES_is_equiv_of_trivial (n : ℕ) (x : fin (succ 2)) [H : is_succ n]
|
||
(HX1 : is_contr (LES_of_homotopy_groups (stratified_pred snat' (n, x))))
|
||
(HX2 : is_contr (LES_of_homotopy_groups (stratified_pred snat' (n+1, x))))
|
||
: is_equiv (cc_to_fn LES_of_homotopy_groups (n, x)) :=
|
||
begin
|
||
induction H with n,
|
||
induction x with m H, cases m with m,
|
||
{ rexact @is_equiv_of_trivial +3ℕ LES_of_homotopy_groups (n, 2) (is_exact_LES_of_homotopy_groups (n, 2))
|
||
proof (is_exact_LES_of_homotopy_groups (n+1, 0)) qed HX1 proof HX2 qed
|
||
proof pgroup_LES_of_homotopy_groups (n+1) 0 qed proof pgroup_LES_of_homotopy_groups (n+1) 1 qed
|
||
proof homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun (n, 0)) qed },
|
||
cases m with m,
|
||
{ rexact @is_equiv_of_trivial +3ℕ LES_of_homotopy_groups (n+1, 0) (is_exact_LES_of_homotopy_groups (n+1, 0))
|
||
proof (is_exact_LES_of_homotopy_groups (n+1, 1)) qed HX1 proof HX2 qed
|
||
proof pgroup_LES_of_homotopy_groups (n+1) 1 qed proof pgroup_LES_of_homotopy_groups (n+1) 2 qed
|
||
proof homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun (n, 1)) qed }, cases m with m,
|
||
{ rexact @is_equiv_of_trivial +3ℕ LES_of_homotopy_groups (n+1, 1) (is_exact_LES_of_homotopy_groups (n+1, 1))
|
||
proof (is_exact_LES_of_homotopy_groups (n+1, 2)) qed HX1 proof HX2 qed
|
||
proof pgroup_LES_of_homotopy_groups (n+1) 2 qed proof pgroup_LES_of_homotopy_groups (n+2) 0 qed
|
||
proof homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun (n, 2)) qed },
|
||
exfalso, apply lt_le_antisymm H, apply le_add_left
|
||
end
|
||
|
||
definition LES_isomorphism_of_trivial_cod (n : ℕ) [H : is_succ n]
|
||
(HX1 : is_contr (πg[n] Y)) (HX2 : is_contr (πg[n+1] Y)) : πg[n] (pfiber f) ≃g πg[n] X :=
|
||
begin
|
||
induction H with n,
|
||
refine isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun (n, 1)) _,
|
||
apply LES_is_equiv_of_trivial, apply HX1, apply HX2
|
||
end
|
||
|
||
definition LES_isomorphism_of_trivial_dom (n : ℕ) [H : is_succ n]
|
||
(HX1 : is_contr (πg[n] X)) (HX2 : is_contr (πg[n+1] X)) : πg[n+1] Y ≃g πg[n] (pfiber f) :=
|
||
begin
|
||
induction H with n,
|
||
refine isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun (n, 2)) _,
|
||
apply LES_is_equiv_of_trivial, apply HX1, apply HX2
|
||
end
|
||
|
||
definition LES_isomorphism_of_trivial_pfiber (n : ℕ)
|
||
(HX1 : is_contr (π[n] (pfiber f))) (HX2 : is_contr (πg[n+1] (pfiber f))) : πg[n+1] X ≃g πg[n+1] Y :=
|
||
begin
|
||
refine isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun (n, 0)) _,
|
||
apply LES_is_equiv_of_trivial, apply HX1, apply HX2
|
||
end
|
||
|
||
end
|
||
|
||
/-
|
||
Fibration sequences
|
||
|
||
This is a similar construction, but with as input data two pointed maps,
|
||
and a pointed equivalence between the domain of the second map and the fiber of the first map,
|
||
and a pointed homotopy.
|
||
-/
|
||
|
||
section
|
||
universe variable u
|
||
parameters {F X Y : pType.{u}} (f : X →* Y) (g : F →* X) (e : pfiber f ≃* F)
|
||
(p : ppoint f ~* g ∘* e)
|
||
include f p
|
||
open succ_str prod nat
|
||
definition fibration_sequence_car [reducible] : +3ℕ → Type*
|
||
| (n, fin.mk 0 H) := Ω[n] Y
|
||
| (n, fin.mk 1 H) := Ω[n] X
|
||
| (n, fin.mk k H) := Ω[n] F
|
||
|
||
definition fibration_sequence_fun
|
||
: Π(n : +3ℕ), fibration_sequence_car (S n) →* fibration_sequence_car n
|
||
| (n, fin.mk 0 H) := proof Ω→[n] f qed
|
||
| (n, fin.mk 1 H) := proof Ω→[n] g qed
|
||
| (n, fin.mk 2 H) := proof Ω→[n] (e ∘* boundary_map f) ∘* loopn_succ_in Y n qed
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition fibration_sequence_pequiv : Π(x : +3ℕ),
|
||
loop_spaces2 f x ≃* fibration_sequence_car x
|
||
| (n, fin.mk 0 H) := by reflexivity
|
||
| (n, fin.mk 1 H) := by reflexivity
|
||
| (n, fin.mk 2 H) := loopn_pequiv_loopn n e
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition fibration_sequence_fun_phomotopy : Π(x : +3ℕ),
|
||
fibration_sequence_pequiv x ∘* loop_spaces_fun2 f x ~*
|
||
(fibration_sequence_fun x ∘* fibration_sequence_pequiv (S x))
|
||
| (n, fin.mk 0 H) := by reflexivity
|
||
| (n, fin.mk 1 H) :=
|
||
begin refine !pid_pcompose ⬝* _, refine apn_phomotopy n p ⬝* _,
|
||
refine !apn_pcompose ⬝* _, reflexivity end
|
||
| (n, fin.mk 2 H) := begin refine !passoc⁻¹* ⬝* _ ⬝* !pcompose_pid⁻¹*, apply pwhisker_right,
|
||
refine _ ⬝* !apn_pcompose⁻¹*, reflexivity end
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition type_LES_fibration_sequence [constructor] : type_chain_complex +3ℕ :=
|
||
transfer_type_chain_complex
|
||
(LES_of_loop_spaces2 f)
|
||
fibration_sequence_fun
|
||
fibration_sequence_pequiv
|
||
fibration_sequence_fun_phomotopy
|
||
|
||
definition is_exact_type_fibration_sequence : is_exact_t type_LES_fibration_sequence :=
|
||
begin
|
||
intro n,
|
||
apply is_exact_at_t_transfer,
|
||
apply is_exact_LES_of_loop_spaces2
|
||
end
|
||
|
||
definition LES_fibration_sequence [constructor] : chain_complex +3ℕ :=
|
||
trunc_chain_complex type_LES_fibration_sequence
|
||
|
||
end
|
||
|
||
|
||
end chain_complex
|