stable-diffusion-webui/modules/interrogate.py

221 lines
8.4 KiB
Python
Raw Normal View History

2022-09-11 15:48:36 +00:00
import os
import sys
import traceback
from collections import namedtuple
from pathlib import Path
2022-09-11 15:48:36 +00:00
import re
import torch
import torch.hub
2022-09-11 15:48:36 +00:00
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import modules.shared as shared
from modules import devices, paths, lowvram, modelloader, errors
2022-09-11 15:48:36 +00:00
blip_image_eval_size = 384
clip_model_name = 'ViT-L/14'
Category = namedtuple("Category", ["name", "topn", "items"])
re_topn = re.compile(r"\.top(\d+)\.")
def category_types():
return [f.stem for f in Path(shared.interrogator.content_dir).glob('*.txt')]
def download_default_clip_interrogate_categories(content_dir):
print("Downloading CLIP categories...")
tmpdir = content_dir + "_tmp"
category_types = ["artists", "flavors", "mediums", "movements"]
try:
os.makedirs(tmpdir)
2023-01-23 14:03:17 +00:00
for category_type in category_types:
torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt"))
os.rename(tmpdir, content_dir)
except Exception as e:
errors.display(e, "downloading default CLIP interrogate categories")
finally:
if os.path.exists(tmpdir):
os.remove(tmpdir)
2022-09-11 15:48:36 +00:00
class InterrogateModels:
blip_model = None
clip_model = None
clip_preprocess = None
dtype = None
running_on_cpu = None
2022-09-11 15:48:36 +00:00
def __init__(self, content_dir):
self.loaded_categories = None
self.skip_categories = []
self.content_dir = content_dir
self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
2022-09-11 15:48:36 +00:00
def categories(self):
if not os.path.exists(self.content_dir):
download_default_clip_interrogate_categories(self.content_dir)
if self.loaded_categories is not None and self.skip_categories == shared.opts.interrogate_clip_skip_categories:
2023-01-23 14:03:17 +00:00
return self.loaded_categories
self.loaded_categories = []
if os.path.exists(self.content_dir):
self.skip_categories = shared.opts.interrogate_clip_skip_categories
category_types = []
for filename in Path(self.content_dir).glob('*.txt'):
category_types.append(filename.stem)
if filename.stem in self.skip_categories:
2023-01-23 14:03:17 +00:00
continue
m = re_topn.search(filename.stem)
2022-09-11 15:48:36 +00:00
topn = 1 if m is None else int(m.group(1))
2023-01-23 14:03:17 +00:00
with open(filename, "r", encoding="utf8") as file:
2022-09-11 15:48:36 +00:00
lines = [x.strip() for x in file.readlines()]
self.loaded_categories.append(Category(name=filename.stem, topn=topn, items=lines))
return self.loaded_categories
2022-09-11 15:48:36 +00:00
def load_blip_model(self):
with paths.Prioritize("BLIP"):
import models.blip
2022-09-11 15:48:36 +00:00
2022-12-03 15:45:51 +00:00
files = modelloader.load_models(
model_path=os.path.join(paths.models_path, "BLIP"),
model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth',
ext_filter=[".pth"],
download_name='model_base_caption_capfilt_large.pth',
)
2022-11-24 13:04:45 +00:00
2022-12-03 15:45:51 +00:00
blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
2022-09-11 15:48:36 +00:00
blip_model.eval()
return blip_model
def load_clip_model(self):
import clip
if self.running_on_cpu:
model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path)
else:
model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path)
2022-09-11 15:48:36 +00:00
model.eval()
model = model.to(devices.device_interrogate)
2022-09-11 15:48:36 +00:00
return model, preprocess
def load(self):
if self.blip_model is None:
self.blip_model = self.load_blip_model()
if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.blip_model = self.blip_model.half()
2022-09-11 15:48:36 +00:00
self.blip_model = self.blip_model.to(devices.device_interrogate)
2022-09-11 15:48:36 +00:00
if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model()
if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.clip_model = self.clip_model.half()
2022-09-11 15:48:36 +00:00
self.clip_model = self.clip_model.to(devices.device_interrogate)
2022-09-11 15:48:36 +00:00
self.dtype = next(self.clip_model.parameters()).dtype
def send_clip_to_ram(self):
2022-09-11 15:48:36 +00:00
if not shared.opts.interrogate_keep_models_in_memory:
if self.clip_model is not None:
self.clip_model = self.clip_model.to(devices.cpu)
def send_blip_to_ram(self):
if not shared.opts.interrogate_keep_models_in_memory:
2022-09-11 15:48:36 +00:00
if self.blip_model is not None:
self.blip_model = self.blip_model.to(devices.cpu)
def unload(self):
self.send_clip_to_ram()
self.send_blip_to_ram()
devices.torch_gc()
2022-09-11 15:48:36 +00:00
def rank(self, image_features, text_array, top_count=1):
import clip
2023-01-23 14:03:17 +00:00
devices.torch_gc()
if shared.opts.interrogate_clip_dict_limit != 0:
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
2022-09-11 15:48:36 +00:00
top_count = min(top_count, len(text_array))
text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
2022-09-11 15:48:36 +00:00
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
2022-09-11 15:48:36 +00:00
for i in range(image_features.shape[0]):
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
similarity /= image_features.shape[0]
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
def generate_caption(self, pil_image):
gpu_image = transforms.Compose([
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
2022-09-11 15:48:36 +00:00
with torch.no_grad():
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
return caption[0]
def interrogate(self, pil_image):
res = ""
2023-01-03 16:01:04 +00:00
shared.state.begin()
shared.state.job = 'interrogate'
2022-09-11 15:48:36 +00:00
try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
devices.torch_gc()
2022-09-11 15:48:36 +00:00
self.load()
caption = self.generate_caption(pil_image)
self.send_blip_to_ram()
devices.torch_gc()
2022-09-11 15:48:36 +00:00
res = caption
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
2022-09-11 15:48:36 +00:00
with torch.no_grad(), devices.autocast():
2022-10-08 19:12:24 +00:00
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
2022-09-11 15:48:36 +00:00
image_features /= image_features.norm(dim=-1, keepdim=True)
2022-09-11 15:48:36 +00:00
for name, topn, items in self.categories():
matches = self.rank(image_features, items, top_count=topn)
for match, score in matches:
if shared.opts.interrogate_return_ranks:
res += f", ({match}:{score/100:.3f})"
else:
res += ", " + match
2022-09-11 15:48:36 +00:00
except Exception:
print("Error interrogating", file=sys.stderr)
2022-09-11 15:48:36 +00:00
print(traceback.format_exc(), file=sys.stderr)
2022-09-12 09:26:37 +00:00
res += "<error>"
2022-09-11 15:48:36 +00:00
self.unload()
2023-01-03 16:01:04 +00:00
shared.state.end()
2022-09-11 15:48:36 +00:00
return res