This commit is contained in:
Michael Zhang 2024-05-08 19:14:30 -05:00
parent 4d7ab55b19
commit 1dd217f750

View file

@ -460,7 +460,7 @@ theorem2∙13∙1 m n = encode m n , equiv
-- res : encode (suc m) (suc n) (ap suc (decode m n c)) ≡ c
res : transport (λ n → code (suc m) n) (ap suc (decode m n c)) (r (suc m)) ≡ c
res = {! !}
res =
in res
@ -471,3 +471,24 @@ theorem2∙13∙1 m n = encode m n , equiv
; h-id = backward m n
}
```
## 2.15 Universal properties
Definition 2.15.1
```
definition2∙15∙1 : {X A B : Set}
→ (X → A × B)
→ (X → A) × (X → B)
definition2∙15∙1 f = Σ.fst ∘ f , Σ.snd ∘ f
```
### Theorem 2.15.2
```
theorem2∙15∙2 : {X A B : Set} → isequiv (definition2∙15∙1 {X} {A} {B})
theorem2∙15∙2 {X} {A} {B} = mkIsEquiv g (λ _ → refl) g (λ _ → refl)
where
g : (X → A) × (X → B) → (X → A × B)
g (f1 , f2) = λ x → (f1 x , f2 x)
```