2.15.2
This commit is contained in:
parent
4d7ab55b19
commit
1dd217f750
1 changed files with 22 additions and 1 deletions
|
@ -460,7 +460,7 @@ theorem2∙13∙1 m n = encode m n , equiv
|
|||
|
||||
-- res : encode (suc m) (suc n) (ap suc (decode m n c)) ≡ c
|
||||
res : transport (λ n → code (suc m) n) (ap suc (decode m n c)) (r (suc m)) ≡ c
|
||||
res = {! !}
|
||||
res =
|
||||
|
||||
in res
|
||||
|
||||
|
@ -471,3 +471,24 @@ theorem2∙13∙1 m n = encode m n , equiv
|
|||
; h-id = backward m n
|
||||
}
|
||||
```
|
||||
|
||||
## 2.15 Universal properties
|
||||
|
||||
Definition 2.15.1
|
||||
|
||||
```
|
||||
definition2∙15∙1 : {X A B : Set}
|
||||
→ (X → A × B)
|
||||
→ (X → A) × (X → B)
|
||||
definition2∙15∙1 f = Σ.fst ∘ f , Σ.snd ∘ f
|
||||
```
|
||||
|
||||
### Theorem 2.15.2
|
||||
|
||||
```
|
||||
theorem2∙15∙2 : {X A B : Set} → isequiv (definition2∙15∙1 {X} {A} {B})
|
||||
theorem2∙15∙2 {X} {A} {B} = mkIsEquiv g (λ _ → refl) g (λ _ → refl)
|
||||
where
|
||||
g : (X → A) × (X → B) → (X → A × B)
|
||||
g (f1 , f2) = λ x → (f1 x , f2 x)
|
||||
```
|
Loading…
Reference in a new issue