closes #31
This commit is contained in:
parent
4ef8cf0dc2
commit
45fa777765
1 changed files with 24 additions and 11 deletions
|
@ -3,10 +3,15 @@
|
|||
module CubicalHott.Theorem7-1-8 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Equiv.Properties
|
||||
open import Cubical.Foundations.HLevels
|
||||
open import Cubical.Data.Sigma
|
||||
open import Data.Nat
|
||||
|
||||
open import CubicalHott.Theorem2-7-2 renaming (theorem to theorem2-7-2)
|
||||
open import CubicalHott.Corollary7-1-5 renaming (corollary to corollary7-1-5)
|
||||
|
||||
theorem : {A : Type} {B : A → Type} {n : ℕ}
|
||||
→ isOfHLevel n A
|
||||
→ ((a : A) → isOfHLevel n (B a))
|
||||
|
@ -25,16 +30,24 @@ theorem {A} {B} {suc zero} A-n-type B-n-type x @ (xa , xb) y @ (ya , yb) =
|
|||
let helper = J (λ a' p' → (ba' : B a') → PathP (λ i' → B (p' i')) xb ba') (λ ba' i' → B-n-type xa xb ba' i') (A-n-type xa ya) yb in
|
||||
helper i
|
||||
theorem {A} {B} {2+ n} A-n-type B-n-type x @ (xa , xb) y @ (ya , yb) =
|
||||
-- isOfHLevel (suc n) ((xa , xb) ≡ (ya , yb))
|
||||
{! !} where
|
||||
goal : (p : xa ≡ ya) → isOfHLevel (suc n) (PathP (λ i → B (p i)) xb yb)
|
||||
goal p = {! !}
|
||||
let eqv = theorem2-7-2 {w = x} {w' = y} in
|
||||
let eqv2 = (fst invEquivEquiv) eqv in
|
||||
let
|
||||
IH = theorem (A-n-type xa ya)
|
||||
-- (a : xa ≡ ya) → isOfHLevel (suc n) (PathP (λ i → B (a i)) xb yb)
|
||||
λ p → J (λ a' p' → (yb' : B a') → isOfHLevel (suc n) (PathP (λ i → B (p' i)) xb yb')) (λ yb' → B-n-type xa xb yb') p yb
|
||||
in corollary7-1-5 (suc n) eqv2 IH
|
||||
|
||||
IH = theorem
|
||||
{A = xa ≡ ya}
|
||||
{B = λ p → {! !}}
|
||||
{n = suc n}
|
||||
(A-n-type xa ya)
|
||||
{! !}
|
||||
-- -- isOfHLevel (suc n) ((xa , xb) ≡ (ya , yb))
|
||||
-- {! !} where
|
||||
-- goal : (p : xa ≡ ya) → isOfHLevel (suc n) (PathP (λ i → B (p i)) xb yb)
|
||||
-- goal p = {! !}
|
||||
|
||||
IH' = subst (λ x₁ → {! !}) {! !} IH
|
||||
-- IH = theorem
|
||||
-- {A = xa ≡ ya}
|
||||
-- {B = λ p → {! !}}
|
||||
-- {n = suc n}
|
||||
-- (A-n-type xa ya)
|
||||
-- {! !}
|
||||
|
||||
-- IH' = subst (λ x₁ → {! !}) {! !} IH
|
Loading…
Reference in a new issue