This commit is contained in:
Michael Zhang 2024-10-14 23:53:52 -05:00
parent 4ef8cf0dc2
commit 45fa777765

View file

@ -3,10 +3,15 @@
module CubicalHott.Theorem7-1-8 where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Data.Nat
open import CubicalHott.Theorem2-7-2 renaming (theorem to theorem2-7-2)
open import CubicalHott.Corollary7-1-5 renaming (corollary to corollary7-1-5)
theorem : {A : Type} {B : A Type} {n : }
isOfHLevel n A
((a : A) isOfHLevel n (B a))
@ -25,16 +30,24 @@ theorem {A} {B} {suc zero} A-n-type B-n-type x @ (xa , xb) y @ (ya , yb) =
let helper = J (λ a' p' (ba' : B a') PathP (λ i' B (p' i')) xb ba') (λ ba' i' B-n-type xa xb ba' i') (A-n-type xa ya) yb in
helper i
theorem {A} {B} {2+ n} A-n-type B-n-type x @ (xa , xb) y @ (ya , yb) =
-- isOfHLevel (suc n) ((xa , xb) ≡ (ya , yb))
{! !} where
goal : (p : xa ya) isOfHLevel (suc n) (PathP (λ i B (p i)) xb yb)
goal p = {! !}
let eqv = theorem2-7-2 {w = x} {w' = y} in
let eqv2 = (fst invEquivEquiv) eqv in
let
IH = theorem (A-n-type xa ya)
-- (a : xa ≡ ya) → isOfHLevel (suc n) (PathP (λ i → B (a i)) xb yb)
λ p J (λ a' p' (yb' : B a') isOfHLevel (suc n) (PathP (λ i B (p' i)) xb yb')) (λ yb' B-n-type xa xb yb') p yb
in corollary7-1-5 (suc n) eqv2 IH
IH = theorem
{A = xa ya}
{B = λ p {! !}}
{n = suc n}
(A-n-type xa ya)
{! !}
-- -- isOfHLevel (suc n) ((xa , xb) ≡ (ya , yb))
-- {! !} where
-- goal : (p : xa ≡ ya) → isOfHLevel (suc n) (PathP (λ i → B (p i)) xb yb)
-- goal p = {! !}
IH' = subst (λ x₁ {! !}) {! !} IH
-- IH = theorem
-- {A = xa ≡ ya}
-- {B = λ p → {! !}}
-- {n = suc n}
-- (A-n-type xa ya)
-- {! !}
-- IH' = subst (λ x₁ → {! !}) {! !} IH