2024-07-29 19:39:10 +00:00
|
|
|
|
module Exercises1 where
|
|
|
|
|
|
|
|
|
|
open import Agda.Primitive
|
|
|
|
|
|
|
|
|
|
open import foundation-core.empty-types
|
|
|
|
|
open import foundation-core.equivalences
|
|
|
|
|
open import foundation-core.negation
|
2024-08-01 15:32:27 +00:00
|
|
|
|
open import foundation.natural-numbers
|
2024-07-29 19:39:10 +00:00
|
|
|
|
open import foundation.dependent-pair-types
|
|
|
|
|
open import foundation.identity-types
|
|
|
|
|
open import foundation.univalence
|
|
|
|
|
open import foundation.sections
|
|
|
|
|
open import foundation.retractions
|
|
|
|
|
|
|
|
|
|
_≡_ = _=_
|
|
|
|
|
⊥ = empty
|
|
|
|
|
|
|
|
|
|
equal-to-zero : {A : Set} (f : ¬ A) → A ≡ ⊥
|
|
|
|
|
equal-to-zero {A} f = eq-equiv A ⊥ eqv
|
|
|
|
|
where
|
|
|
|
|
s : section f
|
|
|
|
|
s = (λ ()) , λ x → ex-falso x
|
|
|
|
|
|
|
|
|
|
r : retraction f
|
|
|
|
|
r = (λ ()) , λ x → ex-falso (f x)
|
|
|
|
|
|
|
|
|
|
eqv : A ≃ ⊥
|
|
|
|
|
eqv = f , s , r
|
2024-08-01 15:32:27 +00:00
|
|
|
|
|
|
|
|
|
asdf : 0 ≡ 1
|