unimath2024/Exercises1.agda

28 lines
644 B
Agda
Raw Normal View History

2024-07-29 19:39:10 +00:00
module Exercises1 where
open import Agda.Primitive
open import foundation-core.empty-types
open import foundation-core.equivalences
open import foundation-core.negation
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.univalence
open import foundation.sections
open import foundation.retractions
_≡_ = __
= empty
equal-to-zero : {A : Set} (f : ¬ A) A
equal-to-zero {A} f = eq-equiv A eqv
where
s : section f
s = (λ ()) , λ x ex-falso x
r : retraction f
r = (λ ()) , λ x ex-falso (f x)
eqv : A
eqv = f , s , r