27 lines
644 B
Agda
27 lines
644 B
Agda
module Exercises1 where
|
||
|
||
open import Agda.Primitive
|
||
|
||
open import foundation-core.empty-types
|
||
open import foundation-core.equivalences
|
||
open import foundation-core.negation
|
||
open import foundation.dependent-pair-types
|
||
open import foundation.identity-types
|
||
open import foundation.univalence
|
||
open import foundation.sections
|
||
open import foundation.retractions
|
||
|
||
_≡_ = _=_
|
||
⊥ = empty
|
||
|
||
equal-to-zero : {A : Set} (f : ¬ A) → A ≡ ⊥
|
||
equal-to-zero {A} f = eq-equiv A ⊥ eqv
|
||
where
|
||
s : section f
|
||
s = (λ ()) , λ x → ex-falso x
|
||
|
||
r : retraction f
|
||
r = (λ ()) , λ x → ex-falso (f x)
|
||
|
||
eqv : A ≃ ⊥
|
||
eqv = f , s , r
|