exercises
This commit is contained in:
parent
63f1c282a9
commit
6e66d5c76d
6 changed files with 863 additions and 3 deletions
|
@ -317,7 +317,7 @@ So $sym(x, x, refl(x)) :defeq refl(x)$
|
|||
[$unit$], [], [$top$],
|
||||
[$empty$], [], [$bot$],
|
||||
[$A times B$], [cartesian product], [$A and B$],
|
||||
[$A + B$], [disjoint unions $A B$], [$A or B$],
|
||||
[$A + B$], [disjoint unions $A product.co B$], [$A or B$],
|
||||
[$A -> B$], [set of functions $A -> B$], [$A => B$],
|
||||
[$x : A tack.r B(x)$], [], [predicate $B$ on $A$],
|
||||
[$sum_(x : A) B(x)$], [], [$exists x in A, B(x)$],
|
||||
|
|
39
Lol.agda
Normal file
39
Lol.agda
Normal file
|
@ -0,0 +1,39 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
|
||||
data ℕ : Set where
|
||||
zero : ℕ
|
||||
suc : ℕ → ℕ
|
||||
|
||||
add : ℕ → ℕ → ℕ
|
||||
add zero n = n
|
||||
add (suc m) n = add m (suc n)
|
||||
|
||||
data ℤ₀ : Set where
|
||||
pos : ℕ → ℤ₀
|
||||
negsuc : ℕ → ℤ₀
|
||||
|
||||
data ℤ : Set where
|
||||
z : ℕ → ℕ → ℤ
|
||||
p : (m n : ℕ) → z m n ≡ z (suc m) (suc n)
|
||||
|
||||
ℤ→ℤ₀ : ℤ → ℤ₀
|
||||
ℤ→ℤ₀ (z zero zero) = pos zero
|
||||
ℤ→ℤ₀ (z zero (suc x₁)) = negsuc x₁
|
||||
ℤ→ℤ₀ (z (suc x) zero) = pos (suc x)
|
||||
ℤ→ℤ₀ (z (suc x) (suc x₁)) = ℤ→ℤ₀ (z x x₁)
|
||||
ℤ→ℤ₀ (p m n i) = ℤ→ℤ₀ {! !}
|
||||
|
||||
ℤ₀→ℤ : ℤ₀ → ℤ
|
||||
ℤ₀→ℤ (pos x) = z x zero
|
||||
ℤ₀→ℤ (negsuc x) = z zero (suc x)
|
||||
|
||||
ap : ∀ {A B x y} → (f : A → B) → (x ≡ y) → (f x ≡ f y)
|
||||
ap f x i = f (x i)
|
||||
|
||||
add-ℤ : ℤ → ℤ → ℤ
|
||||
add-ℤ (z x x₁) (z x₂ x₃) = z (add x x₂) (add x₁ x₃)
|
||||
add-ℤ (z x x₁) (p m n i) = z (add x {! !}) {! !}
|
||||
add-ℤ (p m n i) (z x x₁) = {! !}
|
||||
add-ℤ (p m n i) (p m₁ n₁ i₁) = {! !}
|
190
coq_exercises.v
Normal file
190
coq_exercises.v
Normal file
|
@ -0,0 +1,190 @@
|
|||
(** Exercise sheet for lecture 2: Fundamentals of Coq.
|
||||
|
||||
The goal is to replace all of the "..." by suitable Coq code
|
||||
satisfying the specification below.
|
||||
|
||||
Written by Anders Mörtberg.
|
||||
Minor modifications made by Marco Maggesi.
|
||||
|
||||
*)
|
||||
Require Import UniMath.Foundations.Preamble.
|
||||
|
||||
Definition idfun : forall (A : UU), A -> A := fun (A : UU) (a : A) => a.
|
||||
|
||||
Definition const (A B : UU) (a : A) (b : B) : A := a.
|
||||
|
||||
(** * Booleans *)
|
||||
|
||||
Definition ifbool (A : UU) (x y : A) : bool -> A :=
|
||||
bool_rect (fun _ : bool => A) x y.
|
||||
|
||||
Definition negbool : bool -> bool :=
|
||||
ifbool bool false true.
|
||||
|
||||
Definition andbool (b : bool) : bool -> bool :=
|
||||
ifbool (bool -> bool) (idfun bool) (const bool bool false) b.
|
||||
|
||||
(** Exercise: define boolean or: *)
|
||||
|
||||
Definition orbool (b : bool) : bool -> bool :=
|
||||
ifbool (bool -> bool) (const bool bool true) (idfun bool) b.
|
||||
|
||||
(* This should satisfy: *)
|
||||
Eval compute in orbool true true. (* true *)
|
||||
Eval compute in orbool true false. (* true *)
|
||||
Eval compute in orbool false true. (* true *)
|
||||
Eval compute in orbool false false. (* false *)
|
||||
|
||||
(** * Natural numbers *)
|
||||
Definition nat_rec (A : UU) (a : A) (f : nat -> A -> A) : nat -> A :=
|
||||
nat_rect (fun _ : nat => A) a f.
|
||||
|
||||
Definition pred : nat -> nat := nat_rec nat 0 (const nat nat).
|
||||
|
||||
Definition even : nat -> bool := nat_rec bool true (fun _ b => negbool b).
|
||||
|
||||
(** Exercise: define a function odd that tests if a number is odd *)
|
||||
|
||||
Definition odd : nat -> bool := nat_rec bool false (fun _ b => negbool b).
|
||||
|
||||
(* This should satisfy *)
|
||||
Eval compute in odd 24. (* false *)
|
||||
Eval compute in odd 19. (* true *)
|
||||
|
||||
(*
|
||||
Beware of big numbers: [UniMath.Foundations.Preamble] only defines notation up to 24.
|
||||
*)
|
||||
|
||||
(** Exercise: define a notation "myif b then x else y" for "ifbool _ x y b"
|
||||
and rewrite negbool and andbool using this notation. *)
|
||||
|
||||
Notation "'myif' b 'then' x 'else' y" := (ifbool _ x y b) (at level 1).
|
||||
|
||||
(** Note that we cannot introduce the notation "if b then x else y" as
|
||||
this is already used. *)
|
||||
|
||||
Definition negbool' (b : bool) : bool := myif b then false else true.
|
||||
|
||||
(* This should satisfy: *)
|
||||
Eval compute in negbool' true. (* false *)
|
||||
Eval compute in negbool' false. (* true *)
|
||||
|
||||
Definition andbool' (b1 b2 : bool) : bool := myif b1 then b2 else false.
|
||||
|
||||
(* This should satisfy: *)
|
||||
Eval compute in andbool true true. (* true *)
|
||||
Eval compute in andbool true false. (* false *)
|
||||
Eval compute in andbool false true. (* false *)
|
||||
Eval compute in andbool false false. (* false *)
|
||||
|
||||
Definition add (m : nat) : nat -> nat := nat_rec nat m (fun _ y => S y).
|
||||
|
||||
Definition iter (A : UU) (a : A) (f : A → A) : nat → A :=
|
||||
nat_rec A a (λ _ y, f y).
|
||||
|
||||
(* Type space and then \hat to enter the symbol ̂. *)
|
||||
Notation "f ̂ n" := (λ x, iter _ x f n) (at level 10).
|
||||
|
||||
Definition sub (m n : nat) : nat := pred ̂ n m.
|
||||
|
||||
(** Exercise: define addition using iter and S *)
|
||||
|
||||
Definition add' (m : nat) : nat → nat := iter nat m S.
|
||||
|
||||
(* This should satisfy: *)
|
||||
Eval compute in add' 4 9. (* 13 *)
|
||||
|
||||
Definition is_zero : nat -> bool := nat_rec bool true (fun _ _ => false).
|
||||
|
||||
Definition eqnat (m n : nat) : bool :=
|
||||
andbool (is_zero (sub m n)) (is_zero (sub n m)).
|
||||
|
||||
Notation "m == n" := (eqnat m n) (at level 50).
|
||||
|
||||
(** Exercises: define <, >, ≤, ≥ *)
|
||||
|
||||
Check nat_rec.
|
||||
|
||||
Definition ltnat (m n : nat) : bool :=
|
||||
nat_rec bool false (fun _ _ => true) (sub n m).
|
||||
(* Fixpoint ltnat (m n : nat) : bool :=
|
||||
match m with
|
||||
| O => match n with O => false | S _ => true end
|
||||
| S m' => match n with O => false | S n' => ltnat m' n' end
|
||||
end. *)
|
||||
|
||||
Notation "x < y" := (ltnat x y).
|
||||
|
||||
(* This should satisfy: *)
|
||||
Eval compute in (2 < 3). (* true *)
|
||||
Eval compute in (3 < 3). (* false *)
|
||||
Eval compute in (4 < 3). (* false *)
|
||||
|
||||
Definition gtnat (m n : nat) : bool :=
|
||||
nat_rec bool false (fun _ _ => true) (sub m n).
|
||||
|
||||
Notation "x > y" := (gtnat x y).
|
||||
|
||||
(* This should satisfy: *)
|
||||
Eval compute in (2 > 3). (* false *)
|
||||
Eval compute in (3 > 3). (* false *)
|
||||
Eval compute in (4 > 3). (* true *)
|
||||
|
||||
Definition leqnat (m n : nat) : bool := negbool (gtnat m n).
|
||||
|
||||
Notation "x ≤ y" := (leqnat x y) (at level 10).
|
||||
|
||||
(* This should satisfy: *)
|
||||
Eval compute in (2 ≤ 3). (* true *)
|
||||
Eval compute in (3 ≤ 3). (* true *)
|
||||
Eval compute in (4 ≤ 3). (* false *)
|
||||
|
||||
Definition geqnat (m n : nat) : bool := negbool (ltnat m n).
|
||||
|
||||
Notation "x ≥ y" := (geqnat x y) (at level 10).
|
||||
|
||||
(* This should satisfy: *)
|
||||
Eval compute in (2 ≥ 3). (* false *)
|
||||
Eval compute in (3 ≥ 3). (* true *)
|
||||
Eval compute in (4 ≥ 3). (* true *)
|
||||
|
||||
(** * Coproduct and integers *)
|
||||
|
||||
Definition coprod_rec {A B C : UU} (f : A → C) (g : B → C) : A ⨿ B → C :=
|
||||
@coprod_rect A B (λ _, C) f g.
|
||||
|
||||
Definition Z : UU := coprod nat nat.
|
||||
|
||||
Notation "⊹ x" := (inl x) (at level 20).
|
||||
Notation "─ x" := (inr x) (at level 40).
|
||||
|
||||
Definition Z1 : Z := ⊹ 1.
|
||||
Definition Z0 : Z := ⊹ 0.
|
||||
Definition Zn3 : Z := ─ 2.
|
||||
|
||||
Definition Zcase (A : UU) (fpos : nat → A) (fneg : nat → A) : Z → A :=
|
||||
coprod_rec fpos fneg.
|
||||
|
||||
Definition negate : Z → Z :=
|
||||
Zcase Z (λ x, ifbool Z Z0 (─ pred x) (is_zero x)) (λ x, ⊹ S x).
|
||||
|
||||
(** Exercise (harder): define addition for Z *)
|
||||
|
||||
Definition Zdiff : nat -> nat -> Z := fun x y =>
|
||||
if x > y then inl (sub x y)
|
||||
else (if x < y then inr (sub y x) else inl O).
|
||||
|
||||
Definition Zadd : Z -> Z -> Z :=
|
||||
fun x y => Zcase (Z -> Z)
|
||||
(fun x' => Zcase Z (fun y' => inl (add x' y')) (fun y' => Zdiff x' y'))
|
||||
(fun x' => Zcase Z (fun y' => Zdiff y' x') (fun y' => inr (S (add x' y'))))
|
||||
x y.
|
||||
|
||||
(* This should satisfy: *)
|
||||
Eval compute in Zadd Z0 Z0. (* ⊹ 0 *)
|
||||
Eval compute in Zadd Z1 Z1. (* ⊹ 2 *)
|
||||
Eval compute in Zadd Z1 Zn3. (* ─ 1 *) (* recall that negative numbers are off-by-one *)
|
||||
Eval compute in Zadd Zn3 Z1. (* ─ 1 *)
|
||||
Eval compute in Zadd Zn3 Zn3. (* ─ 5 *)
|
||||
Eval compute in Zadd (Zadd Zn3 Zn3) Zn3. (* ─ 8 *)
|
||||
Eval compute in Zadd Z0 (negate (Zn3)). (* ⊹ 3 *)
|
631
fundamentals_lecture.v
Normal file
631
fundamentals_lecture.v
Normal file
|
@ -0,0 +1,631 @@
|
|||
(**
|
||||
|
||||
<<
|
||||
Lecture 2: Fundamentals of Coq
|
||||
-------------------------------------------------------------
|
||||
Anders Mörtberg (Carnegie Mellon and Stockholm University)
|
||||
Minor modifications made by Marco Maggesi (Univesity of Florence).
|
||||
Minor modifications made by Niels van der Weide (Radboud University).
|
||||
>>
|
||||
|
||||
The Coq proof assistant is a programming language for writing
|
||||
proofs: https://coq.inria.fr/
|
||||
|
||||
It has been around since 1984 and was initially implemented by Thierry
|
||||
Coquand and his PhD supervisor Gérard Huet. The first version, called
|
||||
CoC, implemented the Calculus of Constructions as presented in:
|
||||
|
||||
"The Calculus of Constructions"
|
||||
Thierry Coquand and Gérard Huet
|
||||
Information and Computation 76(2–3): 95–120. 1988.
|
||||
|
||||
It was later extended to the Calculus of Inductive Constructions and
|
||||
the name changed to Coq. These type theories are similar to Martin-Löf
|
||||
type theory. As Coq is supposed to be a programming language for
|
||||
developing proofs all programs have to be terminating, so it can be
|
||||
seen as a "total" programming language.
|
||||
|
||||
The Coq system has a very long and detailed reference manual:
|
||||
|
||||
https://coq.inria.fr/distrib/current/refman/
|
||||
|
||||
However, UniMath is only using a small subset of Coq, so there is a
|
||||
lot of information that is not relevant for UniMath development in
|
||||
there. The fragment of Coq that UniMath uses consists of:
|
||||
|
||||
- Pi-types (with judgmental eta)
|
||||
- Sigma-types (with judgmental eta)
|
||||
- The inductive types of natural numbers, booleans, unit and empty
|
||||
- Coproduct types
|
||||
- A universe UU
|
||||
|
||||
The reason UniMath only relies on this subset is that everything in UniMath
|
||||
has to be motivated by the model in simplicial sets:
|
||||
|
||||
https://arxiv.org/abs/1211.2851
|
||||
|
||||
In this lecture I will show some things than can be done in UniMath as
|
||||
a programming language. In the later lectures we will also see how to
|
||||
prove properties about the programs that we can write in UniMath.
|
||||
|
||||
The UniMath library can be found at:
|
||||
|
||||
https://github.com/UniMath/UniMath
|
||||
|
||||
This whole file is a Coq file and it hence has the file ending ".v" (v
|
||||
for "vernacular") and can be processed using:
|
||||
|
||||
- emacs with proof-general: https://proofgeneral.github.io/
|
||||
- Coq IDE
|
||||
- VSCode
|
||||
|
||||
I use emacs as it is also an extremely powerful text editor, but if
|
||||
you never saw emacs before it might be quite overwhelming. An
|
||||
alternative that might be easier for newcomers is Coq IDE (interactive
|
||||
development environment). It also has some features that emacs doesn't
|
||||
have so some Coq experts use it as well, but in this talk I will use
|
||||
emacs.
|
||||
|
||||
In order to make emacs interact with Coq one should install Proof
|
||||
General. This is an extension to emacs that enables it to interact
|
||||
with a range of proof assistants, including Coq. For UniMath
|
||||
development one should also install agda-mode in order to be able to
|
||||
properly insert unicode characters.
|
||||
|
||||
The basic keybinding that I use when working in Proof General are:
|
||||
<<
|
||||
C-c C-n -- Process one line
|
||||
C-c C-u -- Unprocess a line
|
||||
C-c C-ENTER -- Process the whole buffer up until the cursor
|
||||
C-c C-b -- Process the whole file
|
||||
C-c C-r -- Unprocess (retract) the whole file
|
||||
C-x C-c -- Kill the Coq process
|
||||
>>
|
||||
For more commands see:
|
||||
|
||||
https://proofgeneral.github.io/doc/master/userman/Basic-Script-Management/#Script-processing-commands
|
||||
https://proofgeneral.github.io/doc/master/userman/Coq-Proof-General/#Coq_002dspecific-commands
|
||||
|
||||
Here C = CTRL and M = ALT on a standard emacs setup, so "C-c C-n"
|
||||
means "press c while holding CTRL and then press n while still holding
|
||||
CTRL" (note that the keybindings are case sensitive). ENTER is the
|
||||
"return" key on my keyboard.
|
||||
|
||||
Various basic emacs commands:
|
||||
<<
|
||||
C-x C-f -- Find file
|
||||
C-x C-s -- Save file
|
||||
C-x C-x -- Exit emacs
|
||||
C-x b -- Kill buffer
|
||||
C-_ -- Undo
|
||||
C-x 1 -- Maximize buffer
|
||||
C-x 2 -- Split buffer horizontally
|
||||
C-x 3 -- Split buffer vertically
|
||||
M-% -- Search-and-replace
|
||||
M-; -- Comment region
|
||||
>>
|
||||
For more commands see: https://www.gnu.org/software/emacs/ (or just
|
||||
Google "emacs tutorial")
|
||||
|
||||
*)
|
||||
|
||||
(** To import a file write:
|
||||
<<
|
||||
Require Import Dir.Filename.
|
||||
>>
|
||||
*)
|
||||
|
||||
(**
|
||||
|
||||
This will import the file Filename in the directory Dir. This assumes
|
||||
that directory Dir is visible to Coq, that is, in the list of
|
||||
directories in which Coq looks for files to import. If you are working
|
||||
in the UniMath directory then Coq will be able to find all of the
|
||||
files in the UniMath library, but if you are in another directory you
|
||||
need to the update your LoadPath by running
|
||||
<<
|
||||
Add LoadPath "/path/to/UniMath".
|
||||
>>
|
||||
(where "/path/to/UniMath/" is replaced to the path where UniMath is
|
||||
located on your computer).
|
||||
|
||||
Coq has a fancy module system which allows you to import and export
|
||||
definitions in various complicated ways. We extremely rarely use
|
||||
this in UniMath so you can safely ignore it for now. The only thing
|
||||
you need to know is that there is an alternative to Require Import:
|
||||
<<
|
||||
Require Export Dir.Filename.
|
||||
>>
|
||||
that is used in some files. This will make the file you are working
|
||||
on import all of the definitions in Dir.Filename and then export
|
||||
them again so that any file that imports this file also gets the
|
||||
definitions in Dir.Filename. I personally only use Require Import.
|
||||
|
||||
*)
|
||||
|
||||
(* Let's import one of the most basic UniMath file: *)
|
||||
Require Import UniMath.Foundations.Preamble.
|
||||
(* This file contains definition of the inductive types of UniMath,
|
||||
makes UU the name for the universe and various other basic things. *)
|
||||
|
||||
(** * Definitions, lambda terms *)
|
||||
|
||||
(** The polymorphic identity function *)
|
||||
Definition idfun : forall (A : UU), A -> A := fun (A : UU) (a : A) => a.
|
||||
|
||||
(** forall = Pi *)
|
||||
(** fun = lambda *)
|
||||
|
||||
Check idfun. (* Or use Ctrl-Alt-C or Ctrl-Cmd-C on idfun. *)
|
||||
Print idfun. (* Or use Ctrl-Alt-P or Ctrl-Cmd-P on idfun. *)
|
||||
|
||||
Definition idfun' (A : UU) (a : A) : A := a.
|
||||
|
||||
Check idfun'.
|
||||
Print idfun'.
|
||||
|
||||
Definition idfun'' {A : UU} (a : A) : A := a.
|
||||
|
||||
Check idfun' nat 3.
|
||||
|
||||
(** The constant function that returns its first argument *)
|
||||
Definition const (A B : UU) (a : A) (b : B) : A := a.
|
||||
|
||||
(** The booleans are defined in UniMath.Foundations.Preamble *)
|
||||
About bool.
|
||||
Print bool.
|
||||
Locate bool.
|
||||
|
||||
(** These are generated by true and false *)
|
||||
Check true.
|
||||
Check false.
|
||||
|
||||
(** They also come with an induction principle *)
|
||||
About bool_rect.
|
||||
|
||||
(*
|
||||
bool_rect : ∏ P : bool → Type, P true → P false → ∏ b : bool, P b
|
||||
*)
|
||||
|
||||
(** Using this we can define a "recursion" principle *)
|
||||
Definition ifbool (A : UU) (x y : A) : bool -> A :=
|
||||
bool_rect (fun _ : bool => A) x y.
|
||||
|
||||
(*
|
||||
bool_rect (fun _ : bool => A) x y
|
||||
|
||||
P = fun _ : bool => A
|
||||
x : P true [ A ]
|
||||
y : P false [ A ]
|
||||
b : bool
|
||||
*)
|
||||
|
||||
(** We can define boolean negation: *)
|
||||
Definition negbool : bool -> bool :=
|
||||
ifbool bool false true.
|
||||
|
||||
Eval compute in negbool true.
|
||||
|
||||
(* Alternative definition using pattern matching.
|
||||
Idiomatic in Coq, but we avoid doing this in UniMath. *)
|
||||
|
||||
Definition negbool' (b : bool) : bool :=
|
||||
match b with
|
||||
| true => false
|
||||
| false => true
|
||||
end.
|
||||
|
||||
(** The normalization of negbool and negbool' give the same term. *)
|
||||
Eval compute in negbool.
|
||||
Eval compute in negbool'.
|
||||
|
||||
Print bool_rect.
|
||||
|
||||
(** and compute with it *)
|
||||
Eval compute in negbool true.
|
||||
|
||||
(** Coq supports many evaluation strategies, like cbn and cbv, for
|
||||
details see:
|
||||
|
||||
https://coq.inria.fr/refman/tactics.html#Conversion-tactics
|
||||
|
||||
*)
|
||||
|
||||
(** boolean and *)
|
||||
Definition andbool (b : bool) : bool -> bool :=
|
||||
ifbool (bool -> bool) (idfun bool) (const bool bool false) b.
|
||||
|
||||
Definition andbool' (b1 b2 : bool) : bool
|
||||
:= ifbool bool b2 false b1.
|
||||
|
||||
(*
|
||||
if b1 is true
|
||||
then b2
|
||||
else false
|
||||
*)
|
||||
|
||||
Eval compute in andbool' false true.
|
||||
Eval compute in andbool' false false.
|
||||
Eval compute in andbool' true false.
|
||||
Eval compute in andbool' true true.
|
||||
|
||||
Eval compute in andbool true true.
|
||||
Eval compute in andbool true false.
|
||||
Eval compute in andbool false true.
|
||||
Eval compute in andbool false false.
|
||||
|
||||
(** The natural numbers are defined in UniMath.Foundations.Preamble *)
|
||||
About nat.
|
||||
Print nat.
|
||||
|
||||
(** They are defined as Peano numbers, but we can use numerals *)
|
||||
Check (S(S(S 0))).
|
||||
Check 3.
|
||||
|
||||
(** This type also comes with an induction principle *)
|
||||
Check nat_rect.
|
||||
|
||||
(** We can define the recursor: *)
|
||||
Definition nat_rec (A : UU) (a : A) (f : nat -> A -> A) : nat -> A :=
|
||||
nat_rect (fun _ : nat => A) a f.
|
||||
|
||||
(*
|
||||
Definition nat_rec (A : UU) (a : A) (f : A -> A) : nat -> A :=
|
||||
nat_rect (fun _ : nat => A) a f.
|
||||
*)
|
||||
|
||||
(**
|
||||
|
||||
This can be understood as a function defined by the following clauses:
|
||||
<<
|
||||
nat_rec m f 0 = m
|
||||
nat_rec m f (S n) = f n (nat_rec m f n)
|
||||
>>
|
||||
|
||||
lecture 1 where f : A -> A
|
||||
<<
|
||||
nat_rec m f 0 = m
|
||||
nat_rec m f (S n) = f (nat_rec m f n)
|
||||
>>
|
||||
|
||||
*)
|
||||
|
||||
(** We can look at the normal form of the recursor by *)
|
||||
Eval compute in nat_rec.
|
||||
|
||||
(** This contains a both a "fix" and "match _ with _". These primitives
|
||||
of Coq are not allowed in UniMath. Instead we write everything using
|
||||
recursors. The reason is that everything we write in UniMath has to be
|
||||
justified by the simplicial set model and the situation for general
|
||||
inductive types with match is not spelled out in detail. *)
|
||||
|
||||
(** If you are used to regular programming languages it might seem very
|
||||
strange to only program with the recursors, but it's actually not too
|
||||
bad and we can do many programs quite directly. *)
|
||||
|
||||
(** Truncated predecessor function *)
|
||||
Definition pred : nat -> nat := nat_rec nat 0 (const nat nat).
|
||||
|
||||
Definition pred' : nat -> nat := nat_rec nat 0 (fun n m => n).
|
||||
|
||||
(*
|
||||
|
||||
<<
|
||||
pred 0 = 0
|
||||
pred (S n) = n
|
||||
>>
|
||||
|
||||
*)
|
||||
|
||||
Eval compute in pred 3.
|
||||
Eval compute in pred 1.
|
||||
Eval compute in pred 0.
|
||||
|
||||
(** We can test if a number is even by: *)
|
||||
Definition even : nat -> bool := nat_rec bool true (fun _ b => negbool b).
|
||||
|
||||
Eval compute in even 3.
|
||||
Eval compute in even 4.
|
||||
|
||||
(** Addition *)
|
||||
Definition add (m : nat) : nat -> nat := nat_rec nat m (fun _ y => S y).
|
||||
|
||||
Eval compute in add 2 3.
|
||||
|
||||
(** We can define a nice notation for addition by: *)
|
||||
Notation "x + y" := (add x y).
|
||||
|
||||
Eval compute in 4 + 9.
|
||||
|
||||
Check (add 3 4). (* 3 + 4 : nat *)
|
||||
|
||||
(** To find information about a notation we can write: *)
|
||||
Locate "+".
|
||||
Locate add.
|
||||
|
||||
(** Coq allows us to write very sophisticated notations, for details
|
||||
see: https://coq.inria.fr/refman/syntax-extensions.html *)
|
||||
|
||||
(** In UniMath we use a lot of unicode symbols. To input a unicode
|
||||
symbol type \ and then the name of the symbol. For example \alpha
|
||||
gives α. To get information about a unicode character, including
|
||||
how to write it, put the cursor on top of the symbol and type:
|
||||
M-x describe-char
|
||||
|
||||
We can write:
|
||||
<<
|
||||
λ x, e instead of fun x => e
|
||||
∏ (x : A), T instead of forall (x : A), T
|
||||
A → B instead of A -> B
|
||||
>>
|
||||
*)
|
||||
|
||||
(** Iterate a function n times *)
|
||||
Definition iter (A : UU) (a : A) (f : A → A) (n : nat) : A :=
|
||||
nat_rec A a (λ _ y, f y) n.
|
||||
|
||||
Notation "f ^ n" := (λ x, iter _ x f n).
|
||||
|
||||
Eval compute in (pred ^ 2) 5.
|
||||
|
||||
Definition sub (m n : nat) : nat := (pred ^ n) m.
|
||||
|
||||
Eval compute in sub 15 4.
|
||||
Eval compute in sub 11 15.
|
||||
|
||||
Definition is_zero : nat → bool := nat_rec bool true (λ _ _, false).
|
||||
|
||||
Eval compute in is_zero 3.
|
||||
Eval compute in is_zero 0.
|
||||
|
||||
Definition eqnat (m n : nat) : bool :=
|
||||
andbool (is_zero (sub m n)) (is_zero (sub n m)).
|
||||
|
||||
Notation "m == n" := (eqnat m n) (at level 50).
|
||||
|
||||
Eval compute in 1 + 1 == 2.
|
||||
Eval compute in 5 == 3.
|
||||
Eval compute in 9 == 5.
|
||||
|
||||
(** Note that I could omit the A from the definition of f ̂ n and just
|
||||
replace it by _. The reason is that Coq very often can infer what
|
||||
arguments are so that we can omit them. *)
|
||||
|
||||
(** For example if I omit nat in *)
|
||||
Check idfun _ 3.
|
||||
(** Coq will figure it out for us. *)
|
||||
|
||||
(** We can tell Coq to always put _ for an argument by using curly
|
||||
braces in the definition: *)
|
||||
|
||||
(** Such an argument is called an "implicit" and these are very useful
|
||||
to get definitions that don't take too many arguments. However, it is
|
||||
sometimes necessary to be able to give some of the arguments
|
||||
explicitly, this is using "@". *)
|
||||
|
||||
Check @idfun'' nat 3.
|
||||
|
||||
|
||||
(** * More inductive types *)
|
||||
|
||||
(** The inductive types we have seen so far come from the standard
|
||||
library, but Coq allows us to define any inductive types we want. In
|
||||
UniMath we don't allow this and the additional inductive types we have
|
||||
are defined in Foundations. *)
|
||||
|
||||
(** One of these is the coproduct (disjoint union) of types *)
|
||||
About coprod.
|
||||
Print coprod.
|
||||
Check ii1.
|
||||
Check ii2.
|
||||
Print inl.
|
||||
Print inr.
|
||||
|
||||
Check (λ A B C : UU, @coprod_rect A B (λ _, C)).
|
||||
|
||||
Definition coprod_rec {A B C : UU} (f : A → C) (g : B → C) : coprod A B → C :=
|
||||
@coprod_rect A B (λ _, C) f g.
|
||||
|
||||
(** We can define integers as a coproduct of nat with itself *)
|
||||
|
||||
Definition Z : UU := coprod nat nat.
|
||||
|
||||
(* NB: Use \hermitconjmatrix to type the symbol ⊹.
|
||||
Use \minus to type the symbol − *)
|
||||
Notation "⊹ x" := (inl x) (at level 20).
|
||||
Notation "─ x" := (inr x) (at level 40).
|
||||
|
||||
(** +1 = inl 1 *)
|
||||
(** 0 = inl 0 *)
|
||||
(** -1 = inr 0 *)
|
||||
(** Note that we get the negative numbers "off-by-one". *)
|
||||
|
||||
|
||||
Definition Z1 : Z := ⊹ 1.
|
||||
Definition Z0 : Z := ⊹ 0.
|
||||
Definition Zn3 : Z := ─ 2.
|
||||
|
||||
(** We can define a function by case on whether the number is ⊹ n or ─ n *)
|
||||
Definition Zcase (A : UU) (fpos : nat → A) (fneg : nat → A) : Z → A :=
|
||||
coprod_rec fpos fneg.
|
||||
|
||||
Definition negate : Z → Z :=
|
||||
Zcase Z (λ x, ifbool Z Z0 (─ pred x) (is_zero x)) (λ x, ⊹ S x).
|
||||
|
||||
Eval compute in negate Z0.
|
||||
Eval compute in negate Z1.
|
||||
Eval compute in negate Zn3.
|
||||
|
||||
(** We also have two more inductive types: *)
|
||||
|
||||
(** The unit type with one inhabitant tt *)
|
||||
About unit.
|
||||
Print unit.
|
||||
|
||||
(** The empty type with no inhabitants *)
|
||||
About empty.
|
||||
Print empty.
|
||||
|
||||
(** Terms as proofs. *)
|
||||
(* Proof that true and false are different. *)
|
||||
|
||||
Require Import UniMath.Foundations.PartA.
|
||||
|
||||
(** Section's can be very useful to only write parameters that are used
|
||||
many times once and for all. They are also useful for organizing your
|
||||
files into logical sections. *)
|
||||
Section True_not_False.
|
||||
|
||||
Variable (p : true = false).
|
||||
|
||||
Definition P : bool → UU :=
|
||||
bool_rect _ unit ∅.
|
||||
|
||||
Definition true_eq_false_imp_empty : ∅ :=
|
||||
(transportf P p tt).
|
||||
|
||||
End True_not_False.
|
||||
|
||||
About true_eq_false_imp_empty.
|
||||
|
||||
Definition true_not_false : true != false :=
|
||||
true_eq_false_imp_empty.
|
||||
|
||||
(* Alternative definition, in one shot. *)
|
||||
Definition true_not_false' : true != false :=
|
||||
λ p, transportf (bool_rect _ unit ∅) p tt.
|
||||
|
||||
(* Normalization of the proof term. *)
|
||||
Eval compute in true_not_false.
|
||||
|
||||
(** * Sigma types *)
|
||||
|
||||
(** Sigma types are called total2 and this is the only example of a
|
||||
Record in the whole UniMath library. The reason we use a record is so
|
||||
that we can get the eta principle definitionally. *)
|
||||
|
||||
About total2.
|
||||
Print total2.
|
||||
|
||||
(** We have a notation ∑ (x : A), B for Sigma types *)
|
||||
|
||||
(** To form a pair use *)
|
||||
Check tpair.
|
||||
Locate ",,".
|
||||
|
||||
(** and to project out of a pair use *)
|
||||
Check pr1.
|
||||
Check pr2.
|
||||
|
||||
(** In PartA.v we define the direct product as a Sigma type *)
|
||||
Definition dirprod (X Y : UU) : UU := ∑ x : X, Y.
|
||||
|
||||
Notation "A × B" := (dirprod A B) (at level 75, right associativity) : type_scope.
|
||||
|
||||
Definition dirprod_pr1 {X Y : UU} : X × Y → X := pr1.
|
||||
Definition dirprod_pr2 {X Y : UU} : X × Y → Y := pr2.
|
||||
|
||||
Definition dirprodf {X Y X' Y' : UU} (f : X → Y) (f' : X' → Y')
|
||||
(xx' : X × X') : Y × Y' := (f (pr1 xx'),,f' (pr2 xx')).
|
||||
|
||||
Definition swap {X Y : UU} (xy : X × Y) : Y × X :=
|
||||
dirprodf dirprod_pr2 dirprod_pr1 (xy,,xy).
|
||||
|
||||
(** We can define the type of even numbers as a Sigma-type: *)
|
||||
Definition even_nat : UU := ∑ (n : nat), ifbool _ unit empty (even n).
|
||||
|
||||
Print even_nat.
|
||||
|
||||
Definition test20 : even_nat := (20,,tt).
|
||||
|
||||
(** This Definition does not work *)
|
||||
Fail Definition test3 : even_nat := (3,,tt).
|
||||
|
||||
Section curry.
|
||||
|
||||
Variables A B C : UU.
|
||||
|
||||
(** To make these arguments implicit use:
|
||||
<<
|
||||
Context {A B C : UU}.
|
||||
>>
|
||||
*)
|
||||
|
||||
Definition curry : (A × B → C) → (A → B → C) :=
|
||||
λ (f : A × B → C) (a : A) (b : B), f (a,,b).
|
||||
|
||||
Definition uncurry : (A → B → C) → (A × B → C) :=
|
||||
λ (f : A → B → C) (ab : A × B), f (pr1 ab) (pr2 ab).
|
||||
|
||||
End curry.
|
||||
|
||||
Check curry.
|
||||
Print curry.
|
||||
Check uncurry.
|
||||
Print uncurry.
|
||||
|
||||
|
||||
(** These were all the basics for interacting with Coq in this
|
||||
lecture. The UniMath library is a very large library and so far we
|
||||
have only seen parts of Preamble.v. When writing programs and proofs
|
||||
in UniMath it is very important to be able to search the library so
|
||||
that you don't do something someone else has already done. *)
|
||||
|
||||
(** To find everything about nat type: *)
|
||||
Search nat.
|
||||
|
||||
(** To search for all lemmas involving the pattern *)
|
||||
(* Search _ (_ -> _ -> _). *)
|
||||
|
||||
(** To find information about a notation *)
|
||||
Locate "+".
|
||||
|
||||
(** More information about searching can be found in the reference
|
||||
manual:
|
||||
|
||||
https://coq.inria.fr/distrib/current/refman/proof-engine/vernacular-commands.html?highlight=search#coq:cmd.search
|
||||
*)
|
||||
|
||||
(**
|
||||
|
||||
One can also generate HTML documentation for UniMath that is a bit
|
||||
easier to browse than reading text files. This is done by typing:
|
||||
<<
|
||||
> make html
|
||||
>>
|
||||
You can then open this documentation in your browser:
|
||||
<<
|
||||
> firefox html/toc.html
|
||||
>>
|
||||
In order to have your comments display properly in the HTML use the
|
||||
following format:
|
||||
|
||||
(** This comment will be displayed *)
|
||||
(** * This will be displayed as a section header *)
|
||||
(** ** This will be a subsection *)
|
||||
|
||||
For more details see:
|
||||
|
||||
https://coq.inria.fr/distrib/current/refman/tools.html#coqdoc
|
||||
|
||||
*)
|
||||
|
||||
(**
|
||||
|
||||
The UniMath library is organized into a collection of packages that
|
||||
can be found in the UniMath folder. The library is then compiled using
|
||||
a Makefile which specifies in which order things has to be compiled
|
||||
and how they should be compiled.
|
||||
|
||||
In order to have your file get compiled when you type "make" add it to
|
||||
the .package/files file of the package where it belongs. See for
|
||||
example: UniMath/UniMath/Foundations/.package/files
|
||||
|
||||
If you're working on a new package then you need to add it to the
|
||||
Makefile by writing:
|
||||
|
||||
PACKAGES += MyPackage
|
||||
|
||||
*)
|
||||
|
||||
(*⋆⋆⋆⋆⋆⋆ THE END ⋆⋆⋆⋆⋆⋆*)
|
|
@ -1,2 +1,2 @@
|
|||
depend: agda-unimath
|
||||
depend: agda-unimath cubical
|
||||
include: .
|
Loading…
Reference in a new issue