lecture 1

This commit is contained in:
Michael Zhang 2024-07-29 10:31:49 -05:00
parent 527a7587bb
commit d3fda0f2f4
5 changed files with 576 additions and 4 deletions

1
.envrc
View file

@ -1 +0,0 @@
use flake

1
.gitignore vendored
View file

@ -1,2 +1,3 @@
.direnv .direnv
.*.aux .*.aux
*.pdf

168
Lecture1.typ Normal file
View file

@ -0,0 +1,168 @@
#import "prooftree.typ": *
#import "@preview/showybox:2.0.1": showybox
#set page(width: 5.6in, height: 9in, margin: 0.4in)
= Type theory crash course
== MLTT + Sets
Important features in MLTT:
#let Nat = $sans("Nat")$
#let Vect = $sans("Vect")$
- Dependent types and functions.
e.g $ "concatenate": Pi_(m,n:"Nat") Vect(m) -> Vect(n) -> Vect(m+n) $
- Function arrows always associate to the right.
- All functions are total.
Goal: to write well-typed programs. (implementing an algorithm and proving a mathematical statement are the same)
=== Judgements
$ "context" tack.r "conclusion" $
#let defeq = $equiv$
#table(
columns: 2,
stroke: gray,
$Gamma$, [sequence of variable declarations (contexts are always well-formed)],
$Gamma tack.r A$, [$A$ is well-formed *type* in context $Gamma$],
$Gamma tack.r a : A$, [*term* $a$ is well-formed and of type $A$],
$Gamma tack.r A defeq B$, [types $A$ and $B$ are *convertible*],
$Gamma tack.r a defeq b : A$, [$a$ is convertible to $b$ in type $A$],
)
Example:
$ "isZero?"& : Nat -> "Bool" \
"isZero?"& (n) :defeq "??"
$
At this point, looking for $(n: Nat) tack.r "isZero?"(n) : "Bool"$.
=== Inference rules
#prooftree(
axiom($J_1$),
axiom($J_2$),
axiom($J_3$),
rule(n: 3, $J$),
)
For example:
#prooftree(
axiom($Gamma tack.r a defeq b : A$),
rule($Gamma tack.r b defeq a : A$),
)
#let subst(name, replacement, expr) = $#expr [ #replacement \/ #name ]$
=== Interpreting types as sets
You can interpret types as sets, where $a : A$ is interpreted as $floor(a) : floor(A)$.
- Univalent mathematics can _not_ be interpreted as sets. There are extra axioms that breaks the interpretation.
- The judgement $a : A$ cannot be proved or disproved.
- For ex. 2 of natural numbers and 2 of integers can be converted but are inherently different values.
=== Convertibility
If $x : A$ and $A defeq B$, then $x : B$. We are thinking of these types as literally the same.
If $a defeq a'$ then $f @ a defeq f @ a'$.
=== Declaring types and terms
4 types of rules:
#let typeIntroTable(formation, introduction, elimination, computation) = table(
columns: 2,
stroke: 0in,
[#text(fill: blue, [Formation])], [#formation],
[#text(fill: blue, [Introduction])], [#introduction],
[#text(fill: blue, [Elimination])], [#elimination],
[#text(fill: blue, [Computation])], [#computation],
)
#typeIntroTable(
[a way to construct a new type],
[way to construct *canonical terms* of the type],
[how to use a term of the new type to construct terms of other types],
[what happens when one does Introduction followed by Elimination],
)
Example (context $Gamma$ are elided):
#typeIntroTable(
[If $A$ and $B$ are types, then $A -> B$ is a type
#prooftree(axiom($Gamma tack.r A$), axiom($Gamma tack.r B$), rule(n: 2, $Gamma tack.r A -> B$))],
[If $(x : A) tack.r b : B$, then $tack.r lambda (x : A) . b(x) : A -> B$
- $b$ is an expression that might involve $x$],
[If we have a function $f : A -> B$, and $a : A$, then $f @ a : B$ (or $f(a) : B$)],
[What is the result of the application? $(lambda(x : A) . b(x)) @ a defeq subst(a, x, b)$
- Substitution $subst(a, x, b)$ is built-in],
)
Questions:
- *What does the lambda symbol mean?* Lambda is just notation. It could also be written $tack.r "lambda"((x:A), b(x)) : A -> B$.
Another example: the singleton type
#let unit = $bb(1)$
#let tt = $t t$
#let rec = $sans("rec")$
#typeIntroTable(
[$unit$ is a type],
[$tt : unit$],
[If $x : unit$ and $C$ is a type and $c : C$, then $rec_unit (C, c, x) : C$],
[$rec_unit (C, c, t) defeq c$
- Interpretation in sets: a one-element set],
)
- Question: *How to construct this using lambda abstraction?*
- (Structural rule: having $tack.r c : C$ means $x : unit tack.r c : C$, which by the lambda introduction rule gives us $lambda x.c : unit -> C$)
Booleans
#let Bool = $sans("Bool")$
#let tru = $sans("true")$
#let fls = $sans("false")$
#typeIntroTable(
[$Bool$ is a type],
[$tru : Bool$ and $fls : Bool$],
[If $x : Bool$ and $C$ is a type and $c, c' : C$, then $rec_Bool (C, c, c', x) : C$],
[$rec_Bool (C, c, c', tru) defeq c$ and $rec_Bool (C, c, c', fls) defeq c'$],
)
Empty type
#let empty = $bb(0)$
#typeIntroTable(
[$empty$ is a type],
[_(no introduction rule)_],
[If $x : empty$ and $C$ is a type, then $rec_empty (C, x) : C$],
[_(no computation rule)_],
)
Natural numbers
#let zero = $sans("zero")$
#let suc = $sans("suc")$
#typeIntroTable(
[$Nat$ is a type],
[- $zero : Nat$
- If $n : Nat$, then $suc(n) : Nat$],
[If $C$ is a type and $c_0:C$ and $c_s:C->C$ and $x: Nat$, then $rec_Nat (C,c_0,c_s,x) : C$],
[- $rec_Nat (C, c_0, c_s, zero) defeq c_0$
- $rec_Nat (C, c_0, c_s, suc(n)) defeq c_s @ (rec_Nat (C, c_0, c_s, n))$
We can define computation rule on naturals using a universal property],
)

1
Test.v
View file

@ -4,4 +4,3 @@ Lemma myfirstlemma : 2 + 2 = 4.
Proof. Proof.
apply idpath. apply idpath.
Defined. Defined.

405
prooftree.typ Normal file
View file

@ -0,0 +1,405 @@
#let prooftree(
spacing: (
horizontal: 1em,
vertical: 0.5em,
lateral: 0.5em,
),
label: (
// TODO: split offset into horizontal and vertical
offset: -0.1em,
side: left,
padding: 0.2em,
),
line-stroke: 0.5pt,
..rules
) = context {
// Check parameters and compute normalized settings
let settings = {
// Check basic validity of `rules`.
if rules.pos().len() == 0 {
panic("The `rules` argument cannot be empty.")
}
// Check the types of the parameters.
assert(
type(spacing) == "dictionary",
message: "The value `" + repr(spacing) + "` of the `spacing` argument was expected"
+ "to have type `dictionary` but instead had type `" + type(spacing) + "`."
)
assert(
type(label) == "dictionary",
message: "The value `" + repr(label) + "` of the `label` argument was expected"
+ "to have type `dictionary` but instead had type `" + type(label) + "`."
)
assert(
type(line-stroke) == "length",
message: "The value `" + repr(line-stroke) + "` of the `line-stroke` argument was expected"
+ "to have type `length` but instead had type `" + type(line-stroke) + "`."
)
// Check validity of `spacing`'s keys.
for (key, value) in spacing {
if key not in ("horizontal", "vertical", "lateral", "h", "v", "l") {
panic("The key `" + key + "` in the `spacing` argument `" + repr(spacing) + "` was not expected.")
}
if type(value) != "length" {
panic(
"The value `" + repr(value) + "` of the key `" + key + "` in the `spacing` argument `" + repr(spacing)
+ "` was expected to have type `length` but instead had type `" + type(value) + "`."
)
}
}
// Check exclusivity of `spacing`'s keys.
let mutually_exclusive(key1, key2, keys) = {
assert(
key1 not in keys or key2 not in keys,
message: "The keys `" + key1 + "` and `" + key2 + "` in the `spacing` argument `"
+ repr(spacing) + "` are mutually exclusive."
)
}
mutually_exclusive("horizontal", "h", spacing.keys())
mutually_exclusive("vertical", "v", spacing.keys())
mutually_exclusive("lateral", "l", spacing.keys())
// Check validity of `label`'s keys.
let expected = ("offset": "length", "side": "alignment", "padding": "length")
for (key, value) in label {
if key not in expected {
panic("The key `" + key + "` in the `label` argument `" + repr(label) + "` was not expected.")
}
if type(value) != expected.at(key) {
panic(
"The value `" + repr(value) + "` of the key `" + key + "` in the `label` argument `" + repr(label)
+ "` was expected to have type `" + type.at(key) + "` but instead had type `" + type(value) + "`."
)
}
}
if "side" in label {
assert(
label.side == left or label.side == right,
message: "The value for the key `side` in the argument `label` can only be either "
+ "`left` (default) or `right`, but instead was `" + repr(label.side) + "`."
)
}
(
spacing: (
horizontal: spacing.at("horizontal", default: spacing.at("h", default: 1.5em)).to-absolute(),
vertical: spacing.at("vertical", default: spacing.at("v", default: 0.5em)).to-absolute(),
lateral: spacing.at("lateral", default: spacing.at("l", default: 0.5em)).to-absolute(),
),
label: (
offset: label.at("offset", default: -0.1em).to-absolute(),
side: label.at("side", default: left),
padding: label.at("padding", default: 0.2em).to-absolute(),
),
line-stroke: line-stroke.to-absolute(),
)
}
// Holds the current "pending" rules, i.e. those without a parent
let stack = ()
// Holds all the measures
let layouts = ()
// First pass: compute the layout of each rule given the one of its children
for (i, rule) in rules.pos().enumerate() {
let to_pop = rule.__prooftree_to_pop
let measure_func = rule.__prooftree_measure_func
assert(
to_pop <= stack.len(),
message: "The rule `" + repr(rule.__prooftree_raw) + "` was expecting at least "
+ str(to_pop) + " rules in the stack, but only " + str(stack.len()) + " were present."
)
// Remove the children from the stack
let children = stack.slice(stack.len() - to_pop)
stack = stack.slice(0, stack.len() - to_pop)
// Compute the layout and push
let layout = measure_func(i, settings, children)
stack.push(layout)
layouts.push(layout)
}
assert(
stack.len() == 1,
message: "Some rule remained unmatched: " + str(stack.len()) + " roots were found but only 1 was expected."
)
let last = stack.pop()
let content = {
let offsets = range(rules.pos().len()).map(_ => (0pt, 0pt))
// Second pass: backward draw each rule and compute offset of children
for (i, rule) in rules.pos().enumerate().rev() {
let (dx, dy) = offsets.at(i)
let layout = layouts.at(i)
// Update the offsets of the children
for (j, cdx, cdy) in layout.at("children_offsets", default: ()) {
offsets.at(j) = (dx + cdx, dy + cdy)
}
// Draw at the correct offset
let draw_func = rule.__prooftree_draw_func
place(left + bottom, dx: dx, dy: -dy, draw_func(settings, layout))
}
}
block(width: last.width, height: last.height, content)
}
#let axiom(label: none, body) = {
// Check arguments
{
// Check the type of `label`.
assert(
type(label) in ("string", "content", "none"),
message: "The type of the `label` argument `" + repr(label) + "` was expected to be "
+ "`none`, `string` or `content` but was instead `" + type(label) + "`."
)
}
// TODO: allow the label to be aligned on left, right or center (default and current).
(
__prooftree_raw: body,
__prooftree_to_pop: 0,
__prooftree_measure_func: (i, settings, children) => {
// Compute the size of the body
let body_size = measure(body)
let body_width = body_size.width.to-absolute()
let body_height = body_size.height.to-absolute()
// Compute width of the base (including space)
let base_width = body_width + 2 * settings.spacing.lateral
// Update layout if a label is present
let (width, height) = (base_width, body_height)
let base_side = 0pt
let (label_left, label_bottom) = (0pt, 0pt)
if label != none {
// Compute the size of the label
let label_size = measure(label)
let label_width = label_size.width
let label_height = label_size.height
// Update width and offsets from the left
width = calc.max(base_width, label_width)
base_side = (width - base_width) / 2
label_left = (width - label_width) / 2
// Compute bottom offset and update height
label_bottom = height + 1.5 * settings.spacing.vertical
height = label_bottom + label_height
}
return (
index: i,
width: width,
height: height,
base_left: base_side,
base_right: base_side,
main_left: base_side,
main_right: base_side,
// Extra for draw
body_left: base_side + settings.spacing.lateral,
label_left: label_left,
label_bottom: label_bottom,
)
},
__prooftree_draw_func: (settings, l) => {
// Draw body
place(left + bottom, dx: l.body_left, body)
// Draw label
if label != none {
place(left + bottom, dx: l.label_left, dy: -l.label_bottom, label)
}
}
)
}
#let rule(
n: 1,
label: none,
root
) = {
// Check arguments
{
// Check validity of the `n` parameter
assert(
type(n) == "integer",
message: "The type of the `n` argument `" + repr(n) + "` was expected to be "
+ "`integer` but was instead `" + type(n) + "`."
)
// Check the type of `label`.
assert(
type(label) in ("string", "dictionary", "content", "none"),
message: "The type of the `label` argument `" + repr(label) + "` was expected to be "
+ "`none`, `string`, `content` or `dictionary` but was instead `" + type(label) + "`."
)
// If the type of `label` was string then it's good, otherwise we need to check its keys.
if type(label) == "dictionary" {
for (key, value) in label {
// TODO: maybe consider allowing `top`, `top-left` and `top-right` if `rule(n: 0)` gets changed.
if key not in ("left", "right") {
panic("The key `" + key + "` in the `label` argument `" + repr(label) + "` was not expected.")
}
if type(value) not in ("string", "content") {
panic(
"The value `" + repr(value) + "` of the key `" + key + "` in the `label` argument `" + repr(label)
+ "` was expected to have type `string` or `content` but instead had type `" + type(value) + "`."
)
}
}
}
}
(
__prooftree_raw: root,
__prooftree_to_pop: n,
__prooftree_measure_func: (i, settings, children) => {
let width(it) = measure(it).width.to-absolute()
let height(it) = measure(it).height.to-absolute()
let label = label
if type(label) == "none" {
label = (left: none, right: none)
}
if type(label) in ("string", "content") {
label = (
left: if settings.label.side == left { label } else { none },
right: if settings.label.side == right { label } else { none }
)
}
label = (
left: label.at("left", default: none),
right: label.at("right", default: none),
)
// Size of root
let root_width = width(root)
let root_height = height(root)
// Width of base, which includes spacing as well
let base_width = 2 * settings.spacing.lateral + root_width
// Bottom offset of the line and children
let line_bottom = root_height + settings.spacing.vertical
let children_bottom = line_bottom + settings.spacing.vertical
// Left/right offset of bases of extreme children
let (child_base_left, child_base_right) = (0pt, 0pt)
if n != 0 {
child_base_left = children.first().base_left
child_base_right = children.last().base_right
}
// Width and height of children, and width of their combined bases
let children_width = children
.map(c => c.width)
.intersperse(settings.spacing.horizontal)
.sum()
let children_height = children.map(c => c.height).fold(0pt, calc.max)
let children_base_width = children_width - child_base_left - child_base_right
// Width of the line
let line_width = calc.max(children_base_width, base_width)
// Left/right offsets of lateral children main
let (child_main_left, child_main_right) = (0pt, 0pt)
if n != 0 {
child_main_left = children.first().main_left
child_main_right = children.last().main_right
}
// Offset of bases from line start (same for left/right)
let base_from_line = (line_width - base_width) / 2
let children_base_from_line = (line_width - children_base_width) / 2
// Space for labels
let (label_left_width, label_right_width) = (0pt, 0pt)
let (label_left_height, label_right_height) = (0pt, 0pt)
if label.left != none {
label_left_width = width(label.left) + settings.label.padding
label_left_height = height(label.left)
}
if label.right != none {
label_right_width = width(label.right) + settings.label.padding
label_right_height = height(label.right)
}
// Left/right offsets of line = max of labels and children main
let line_left = calc.max(label_left_width, child_base_left - children_base_from_line)
let line_right = calc.max(label_right_width, child_base_right - children_base_from_line)
// Left/right offsets of base
let base_left = line_left + base_from_line
let base_right = line_right + base_from_line
// Left/right offsets of children
let children_left = line_left + children_base_from_line - child_base_left
let children_right = line_right + children_base_from_line - child_base_right
// Left/right offsets of main
let main_left = calc.min(line_left, children_left + child_main_left)
let main_right = calc.min(line_right, children_right + child_main_right)
// Full width and height
let width = line_left + line_width + line_right
let height = children_bottom + children_height
// Incrementally compute the relative offset of each child
let children_offsets = ()
for c in children {
children_offsets.push((c.index, children_left, children_bottom))
children_left += c.width + settings.spacing.horizontal
}
(
index: i,
width: width,
height: height,
base_left: base_left,
base_right: base_right,
main_left: main_left,
main_right: main_right,
children_offsets: children_offsets,
// Extra for draw
label: label,
root_left: base_left + settings.spacing.lateral,
line_left: line_left,
line_bottom: line_bottom,
line_width: line_width,
label_left: line_left - label_left_width,
label_right: line_left + line_width + settings.label.padding,
label_left_bottom: root_height + settings.spacing.vertical + settings.line-stroke / 2 - label_left_height / 2 - settings.label.offset,
label_right_bottom: root_height + settings.spacing.vertical + settings.line-stroke / 2 - label_right_height / 2 - settings.label.offset,
)
},
__prooftree_draw_func: (settings, l) => {
// Draw root content
place(left + bottom, dx: l.root_left, root)
// Draw line
place(left + bottom, dx: l.line_left, dy: -l.line_bottom, line(length: l.line_width, stroke: settings.line-stroke))
// Draw labels
if l.label.left != none {
place(left + bottom, dx: l.label_left, dy: -l.label_left_bottom, l.label.left)
}
if l.label.right != none {
place(left + bottom, dx: l.label_right, dy: -l.label_right_bottom, l.label.right)
}
}
)
}