2021-02-28 15:59:13 +00:00
|
|
|
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
2021-03-01 17:15:34 +00:00
|
|
|
* Chapter 5: inductive relations and rule induction
|
2021-02-28 15:59:13 +00:00
|
|
|
* Author: Adam Chlipala
|
|
|
|
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
|
|
|
|
|
|
|
Require Import Frap.
|
|
|
|
|
|
|
|
|
|
|
|
(** * Finite sets as inductive predicates *)
|
|
|
|
|
|
|
|
Inductive my_favorite_numbers : nat -> Prop :=
|
|
|
|
| ILike17 : my_favorite_numbers 17
|
|
|
|
| ILike23 : my_favorite_numbers 23
|
|
|
|
| ILike42 : my_favorite_numbers 42.
|
|
|
|
|
|
|
|
Check my_favorite_numbers_ind.
|
|
|
|
|
|
|
|
Theorem favorites_below_50 : forall n, my_favorite_numbers n -> n < 50.
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
invert H.
|
2022-02-06 18:03:43 +00:00
|
|
|
(* [invert]: case analysis on which rules may have been used to prove an
|
|
|
|
* instance of an inductive predicate *)
|
2021-02-28 15:59:13 +00:00
|
|
|
linear_arithmetic.
|
|
|
|
linear_arithmetic.
|
|
|
|
linear_arithmetic.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
|
|
(** * Transitive closure of relations *)
|
|
|
|
|
|
|
|
Inductive tc {A} (R : A -> A -> Prop) : A -> A -> Prop :=
|
|
|
|
| TcBase : forall x y, R x y -> tc R x y
|
|
|
|
| TcTrans : forall x y z, tc R x y -> tc R y z -> tc R x z.
|
|
|
|
|
|
|
|
(** ** Less-than reimagined *)
|
|
|
|
|
|
|
|
Definition oneApart (n m : nat) : Prop :=
|
|
|
|
n + 1 = m.
|
|
|
|
|
|
|
|
Definition lt' : nat -> nat -> Prop := tc oneApart.
|
|
|
|
|
|
|
|
Theorem lt'_lt : forall n m, lt' n m -> n < m.
|
|
|
|
Proof.
|
|
|
|
induct 1.
|
|
|
|
|
|
|
|
unfold oneApart in H.
|
|
|
|
linear_arithmetic.
|
|
|
|
|
|
|
|
linear_arithmetic.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma lt'_O_S : forall m, lt' 0 (S m).
|
|
|
|
Proof.
|
|
|
|
induct m; simplify.
|
|
|
|
|
|
|
|
apply TcBase.
|
|
|
|
unfold oneApart.
|
|
|
|
linear_arithmetic.
|
|
|
|
|
|
|
|
apply TcTrans with (S m).
|
|
|
|
assumption.
|
|
|
|
apply TcBase.
|
|
|
|
unfold oneApart.
|
|
|
|
linear_arithmetic.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma lt_lt'' : forall n k, lt' n (S k + n).
|
|
|
|
Proof.
|
|
|
|
induct k; simplify.
|
|
|
|
|
|
|
|
apply TcBase.
|
|
|
|
unfold oneApart.
|
|
|
|
linear_arithmetic.
|
|
|
|
|
|
|
|
apply TcTrans with (S (k + n)).
|
|
|
|
assumption.
|
|
|
|
apply TcBase.
|
|
|
|
unfold oneApart.
|
|
|
|
linear_arithmetic.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Theorem lt_lt' : forall n m, n < m -> lt' n m.
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
replace m with (S (m - n - 1) + n) by linear_arithmetic.
|
2022-02-06 18:03:43 +00:00
|
|
|
(* [replace]: change a subterm into another one, adding an obligation to prove
|
|
|
|
* equality of the two. *)
|
2021-02-28 15:59:13 +00:00
|
|
|
apply lt_lt''.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
(** ** Transitive closure is idempotent. *)
|
|
|
|
|
|
|
|
Theorem tc_tc2 : forall A (R : A -> A -> Prop) x y, tc R x y -> tc (tc R) x y.
|
|
|
|
Proof.
|
|
|
|
induct 1.
|
|
|
|
|
|
|
|
apply TcBase.
|
|
|
|
apply TcBase.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply TcTrans with y.
|
|
|
|
assumption.
|
|
|
|
assumption.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Theorem tc2_tc : forall A (R : A -> A -> Prop) x y, tc (tc R) x y -> tc R x y.
|
|
|
|
Proof.
|
|
|
|
induct 1.
|
|
|
|
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply TcTrans with y.
|
|
|
|
assumption.
|
|
|
|
assumption.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
|
|
(** * Permutation *)
|
|
|
|
|
|
|
|
(* Lifted from the Coq standard library: *)
|
|
|
|
Inductive Permutation {A} : list A -> list A -> Prop :=
|
|
|
|
| perm_nil :
|
|
|
|
Permutation [] []
|
|
|
|
| perm_skip : forall x l l',
|
|
|
|
Permutation l l' -> Permutation (x::l) (x::l')
|
|
|
|
| perm_swap : forall x y l,
|
|
|
|
Permutation (y::x::l) (x::y::l)
|
|
|
|
| perm_trans : forall l l' l'',
|
|
|
|
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
|
|
|
|
|
|
|
|
Lemma Permutation_to_front : forall A (a : A) (ls : list A),
|
|
|
|
Permutation (a :: ls) (ls ++ [a]).
|
|
|
|
Proof.
|
|
|
|
induct ls; simplify.
|
|
|
|
|
|
|
|
apply perm_skip.
|
|
|
|
apply perm_nil.
|
|
|
|
|
|
|
|
apply perm_trans with (a0 :: a :: ls).
|
|
|
|
apply perm_swap.
|
|
|
|
apply perm_skip.
|
|
|
|
assumption.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Theorem Permutation_rev : forall A (ls : list A),
|
|
|
|
Permutation ls (rev ls).
|
|
|
|
Proof.
|
|
|
|
induct ls; simplify.
|
|
|
|
|
|
|
|
apply perm_nil.
|
|
|
|
|
|
|
|
apply perm_trans with (a :: rev ls).
|
|
|
|
apply perm_skip.
|
|
|
|
assumption.
|
|
|
|
apply Permutation_to_front.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Theorem Permutation_length : forall A (ls1 ls2 : list A),
|
|
|
|
Permutation ls1 ls2 -> length ls1 = length ls2.
|
|
|
|
Proof.
|
|
|
|
induct 1; simplify.
|
|
|
|
|
|
|
|
equality.
|
|
|
|
|
|
|
|
equality.
|
|
|
|
|
|
|
|
equality.
|
|
|
|
|
|
|
|
equality.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma Permutation_refl : forall A (ls : list A),
|
|
|
|
Permutation ls ls.
|
|
|
|
Proof.
|
|
|
|
induct ls.
|
|
|
|
|
|
|
|
apply perm_nil.
|
|
|
|
|
|
|
|
apply perm_skip.
|
|
|
|
assumption.
|
|
|
|
Qed.
|
|
|
|
|
2021-02-28 16:02:46 +00:00
|
|
|
Lemma Permutation_app1 : forall A (ls1 ls2 ls : list A),
|
|
|
|
Permutation ls1 ls2
|
|
|
|
-> Permutation (ls1 ++ ls) (ls2 ++ ls).
|
2021-02-28 15:59:13 +00:00
|
|
|
Proof.
|
|
|
|
induct 1; simplify.
|
|
|
|
|
2021-02-28 16:02:46 +00:00
|
|
|
apply Permutation_refl.
|
2021-02-28 15:59:13 +00:00
|
|
|
|
|
|
|
apply perm_skip.
|
|
|
|
apply IHPermutation.
|
|
|
|
|
|
|
|
apply perm_swap.
|
2021-02-28 16:02:46 +00:00
|
|
|
|
|
|
|
apply perm_trans with (l' ++ ls).
|
|
|
|
apply IHPermutation1.
|
|
|
|
apply IHPermutation2.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma Permutation_app2 : forall A (ls ls1 ls2 : list A),
|
|
|
|
Permutation ls1 ls2
|
|
|
|
-> Permutation (ls ++ ls1) (ls ++ ls2).
|
|
|
|
Proof.
|
|
|
|
induct ls; simplify.
|
|
|
|
|
|
|
|
assumption.
|
|
|
|
|
2021-02-28 15:59:13 +00:00
|
|
|
apply perm_skip.
|
2021-02-28 16:02:46 +00:00
|
|
|
apply IHls.
|
2021-02-28 15:59:13 +00:00
|
|
|
assumption.
|
2021-02-28 16:02:46 +00:00
|
|
|
Qed.
|
2021-02-28 15:59:13 +00:00
|
|
|
|
2021-02-28 16:02:46 +00:00
|
|
|
Theorem Permutation_app : forall A (ls1 ls1' ls2 ls2' : list A),
|
|
|
|
Permutation ls1 ls1'
|
|
|
|
-> Permutation ls2 ls2'
|
|
|
|
-> Permutation (ls1 ++ ls2) (ls1' ++ ls2').
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
apply perm_trans with (ls1' ++ ls2).
|
|
|
|
apply Permutation_app1.
|
|
|
|
assumption.
|
|
|
|
apply Permutation_app2.
|
2021-02-28 15:59:13 +00:00
|
|
|
assumption.
|
|
|
|
Qed.
|
2021-02-28 22:19:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
(** * Simple propositional logic *)
|
|
|
|
|
|
|
|
Module SimplePropositional.
|
|
|
|
Inductive prop :=
|
|
|
|
| Truth
|
|
|
|
| Falsehood
|
|
|
|
| And (p1 p2 : prop)
|
|
|
|
| Or (p1 p2 : prop).
|
|
|
|
|
2021-03-01 02:05:05 +00:00
|
|
|
Inductive valid : prop -> Prop :=
|
2021-02-28 22:19:06 +00:00
|
|
|
| ValidTruth :
|
2021-03-01 02:05:05 +00:00
|
|
|
valid Truth
|
2021-02-28 22:19:06 +00:00
|
|
|
| ValidAnd : forall p1 p2,
|
2021-03-01 02:05:05 +00:00
|
|
|
valid p1
|
|
|
|
-> valid p2
|
|
|
|
-> valid (And p1 p2)
|
2021-02-28 22:19:06 +00:00
|
|
|
| ValidOr1 : forall p1 p2,
|
2021-03-01 02:05:05 +00:00
|
|
|
valid p1
|
|
|
|
-> valid (Or p1 p2)
|
2021-02-28 22:19:06 +00:00
|
|
|
| ValidOr2 : forall p1 p2,
|
2021-03-01 02:05:05 +00:00
|
|
|
valid p2
|
|
|
|
-> valid (Or p1 p2).
|
2021-02-28 22:19:06 +00:00
|
|
|
|
2021-03-01 02:05:05 +00:00
|
|
|
Fixpoint interp (p : prop) : Prop :=
|
2021-02-28 22:19:06 +00:00
|
|
|
match p with
|
|
|
|
| Truth => True
|
|
|
|
| Falsehood => False
|
2021-03-01 02:05:05 +00:00
|
|
|
| And p1 p2 => interp p1 /\ interp p2
|
|
|
|
| Or p1 p2 => interp p1 \/ interp p2
|
2021-02-28 22:19:06 +00:00
|
|
|
end.
|
|
|
|
|
2021-03-01 02:05:05 +00:00
|
|
|
Theorem interp_valid : forall p, interp p -> valid p.
|
2021-02-28 22:19:06 +00:00
|
|
|
Proof.
|
|
|
|
induct p; simplify.
|
|
|
|
|
|
|
|
apply ValidTruth.
|
|
|
|
|
|
|
|
propositional.
|
2022-02-06 18:03:43 +00:00
|
|
|
(* [propositional]: simplify goal according to the rules of propositional
|
|
|
|
* logic, a decidable theory. *)
|
2021-02-28 22:19:06 +00:00
|
|
|
|
|
|
|
propositional.
|
|
|
|
apply ValidAnd.
|
|
|
|
assumption.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
apply ValidOr1.
|
|
|
|
assumption.
|
|
|
|
apply ValidOr2.
|
|
|
|
assumption.
|
|
|
|
Qed.
|
|
|
|
|
2021-03-01 02:05:05 +00:00
|
|
|
Theorem valid_interp : forall p, valid p -> interp p.
|
2021-02-28 22:19:06 +00:00
|
|
|
Proof.
|
|
|
|
induct 1; simplify.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Fixpoint commuter (p : prop) : prop :=
|
|
|
|
match p with
|
|
|
|
| Truth => Truth
|
|
|
|
| Falsehood => Falsehood
|
|
|
|
| And p1 p2 => And (commuter p2) (commuter p1)
|
|
|
|
| Or p1 p2 => Or (commuter p2) (commuter p1)
|
|
|
|
end.
|
|
|
|
|
2021-03-01 02:05:05 +00:00
|
|
|
Theorem valid_commuter_fwd : forall p, valid p -> valid (commuter p).
|
2021-02-28 22:19:06 +00:00
|
|
|
Proof.
|
|
|
|
induct 1; simplify.
|
|
|
|
|
|
|
|
apply ValidTruth.
|
|
|
|
|
|
|
|
apply ValidAnd.
|
|
|
|
assumption.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidOr2.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidOr1.
|
|
|
|
assumption.
|
|
|
|
Qed.
|
|
|
|
|
2021-03-01 02:05:05 +00:00
|
|
|
Theorem valid_commuter_bwd : forall p, valid (commuter p) -> valid p.
|
2021-02-28 22:19:06 +00:00
|
|
|
Proof.
|
|
|
|
induct p; invert 1; simplify.
|
|
|
|
|
|
|
|
apply ValidTruth.
|
|
|
|
|
|
|
|
apply ValidAnd.
|
|
|
|
apply IHp1.
|
|
|
|
assumption.
|
|
|
|
apply IHp2.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidOr2.
|
|
|
|
apply IHp2.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidOr1.
|
|
|
|
apply IHp1.
|
|
|
|
assumption.
|
|
|
|
Qed.
|
|
|
|
End SimplePropositional.
|
|
|
|
|
|
|
|
|
|
|
|
(** * Propositional logic with implication *)
|
|
|
|
|
|
|
|
Module PropositionalWithImplication.
|
|
|
|
Inductive prop :=
|
|
|
|
| Truth
|
|
|
|
| Falsehood
|
|
|
|
| Var (x : var)
|
|
|
|
| And (p1 p2 : prop)
|
|
|
|
| Or (p1 p2 : prop)
|
|
|
|
| Imply (p1 p2 : prop).
|
|
|
|
|
|
|
|
Definition Not (p : prop) := Imply p Falsehood.
|
|
|
|
|
|
|
|
Inductive valid (hyps : prop -> Prop) : prop -> Prop :=
|
|
|
|
| ValidHyp : forall h,
|
|
|
|
hyps h
|
|
|
|
-> valid hyps h
|
|
|
|
| ValidTruthIntro :
|
|
|
|
valid hyps Truth
|
|
|
|
| ValidFalsehoodElim : forall p,
|
|
|
|
valid hyps Falsehood
|
|
|
|
-> valid hyps p
|
|
|
|
| ValidAndIntro : forall p1 p2,
|
|
|
|
valid hyps p1
|
|
|
|
-> valid hyps p2
|
|
|
|
-> valid hyps (And p1 p2)
|
|
|
|
| ValidAndElim1 : forall p1 p2,
|
|
|
|
valid hyps (And p1 p2)
|
|
|
|
-> valid hyps p1
|
|
|
|
| ValidAndElim2 : forall p1 p2,
|
|
|
|
valid hyps (And p1 p2)
|
|
|
|
-> valid hyps p2
|
|
|
|
| ValidOrIntro1 : forall p1 p2,
|
|
|
|
valid hyps p1
|
|
|
|
-> valid hyps (Or p1 p2)
|
|
|
|
| ValidOrIntro2 : forall p1 p2,
|
|
|
|
valid hyps p2
|
|
|
|
-> valid hyps (Or p1 p2)
|
|
|
|
| ValidOrElim : forall p1 p2 p,
|
|
|
|
valid hyps (Or p1 p2)
|
|
|
|
-> valid (fun h => h = p1 \/ hyps h) p
|
|
|
|
-> valid (fun h => h = p2 \/ hyps h) p
|
|
|
|
-> valid hyps p
|
|
|
|
| ValidImplyIntro : forall p1 p2,
|
|
|
|
valid (fun h => h = p1 \/ hyps h) p2
|
|
|
|
-> valid hyps (Imply p1 p2)
|
|
|
|
| ValidImplyElim : forall p1 p2,
|
|
|
|
valid hyps (Imply p1 p2)
|
|
|
|
-> valid hyps p1
|
|
|
|
-> valid hyps p2
|
|
|
|
| ValidExcludedMiddle : forall p,
|
|
|
|
valid hyps (Or p (Not p)).
|
|
|
|
|
|
|
|
Fixpoint interp (vars : var -> Prop) (p : prop) : Prop :=
|
|
|
|
match p with
|
|
|
|
| Truth => True
|
|
|
|
| Falsehood => False
|
|
|
|
| Var x => vars x
|
|
|
|
| And p1 p2 => interp vars p1 /\ interp vars p2
|
|
|
|
| Or p1 p2 => interp vars p1 \/ interp vars p2
|
|
|
|
| Imply p1 p2 => interp vars p1 -> interp vars p2
|
|
|
|
end.
|
|
|
|
|
|
|
|
Theorem valid_interp : forall vars hyps p,
|
|
|
|
valid hyps p
|
|
|
|
-> (forall h, hyps h -> interp vars h)
|
|
|
|
-> interp vars p.
|
|
|
|
Proof.
|
|
|
|
induct 1; simplify.
|
|
|
|
|
|
|
|
apply H0.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
apply IHvalid2.
|
|
|
|
propositional.
|
|
|
|
equality.
|
|
|
|
apply H2.
|
|
|
|
assumption.
|
|
|
|
apply IHvalid3.
|
|
|
|
propositional.
|
|
|
|
equality.
|
|
|
|
apply H2.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply IHvalid.
|
|
|
|
propositional.
|
|
|
|
equality.
|
|
|
|
apply H0.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
excluded_middle (interp vars p); propositional.
|
|
|
|
(* Note that use of excluded middle is a bit controversial in Coq,
|
|
|
|
* and we'll generally be trying to avoid it,
|
|
|
|
* but it helps enough with this example that we don't sweat the details. *)
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma valid_weaken : forall hyps1 p,
|
|
|
|
valid hyps1 p
|
|
|
|
-> forall hyps2 : prop -> Prop,
|
|
|
|
(forall h, hyps1 h -> hyps2 h)
|
|
|
|
-> valid hyps2 p.
|
|
|
|
Proof.
|
|
|
|
induct 1; simplify.
|
|
|
|
|
|
|
|
apply ValidHyp.
|
|
|
|
apply H0.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidTruthIntro.
|
|
|
|
|
|
|
|
apply ValidFalsehoodElim.
|
|
|
|
apply IHvalid.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidAndIntro.
|
|
|
|
apply IHvalid1.
|
|
|
|
assumption.
|
|
|
|
apply IHvalid2.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidAndElim1 with p2.
|
|
|
|
apply IHvalid.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidAndElim2 with p1.
|
|
|
|
apply IHvalid.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidOrIntro1.
|
|
|
|
apply IHvalid.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidOrIntro2.
|
|
|
|
apply IHvalid.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidOrElim with p1 p2.
|
|
|
|
apply IHvalid1.
|
|
|
|
assumption.
|
|
|
|
apply IHvalid2.
|
|
|
|
first_order.
|
|
|
|
apply IHvalid3.
|
|
|
|
first_order.
|
|
|
|
|
|
|
|
apply ValidImplyIntro.
|
|
|
|
apply IHvalid.
|
|
|
|
propositional.
|
|
|
|
right.
|
|
|
|
apply H0.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidImplyElim with p1.
|
|
|
|
apply IHvalid1.
|
|
|
|
assumption.
|
|
|
|
apply IHvalid2.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
apply ValidExcludedMiddle.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma valid_cut : forall hyps1 p p',
|
|
|
|
valid hyps1 p
|
|
|
|
-> forall hyps2, valid hyps2 p'
|
|
|
|
-> (forall h, hyps1 h -> hyps2 h \/ h = p')
|
|
|
|
-> valid hyps2 p.
|
|
|
|
Proof.
|
|
|
|
induct 1; simplify.
|
|
|
|
|
|
|
|
apply H1 in H.
|
|
|
|
propositional.
|
|
|
|
apply ValidHyp.
|
|
|
|
assumption.
|
|
|
|
equality.
|
|
|
|
|
|
|
|
apply ValidTruthIntro.
|
|
|
|
|
|
|
|
apply ValidFalsehoodElim.
|
|
|
|
apply IHvalid; assumption.
|
|
|
|
|
|
|
|
apply ValidAndIntro.
|
|
|
|
apply IHvalid1; assumption.
|
|
|
|
apply IHvalid2; assumption.
|
|
|
|
|
|
|
|
apply ValidAndElim1 with p2.
|
|
|
|
apply IHvalid; assumption.
|
|
|
|
|
|
|
|
apply ValidAndElim2 with p1.
|
|
|
|
apply IHvalid; assumption.
|
|
|
|
|
|
|
|
apply ValidOrIntro1.
|
|
|
|
apply IHvalid; assumption.
|
|
|
|
|
|
|
|
apply ValidOrIntro2.
|
|
|
|
apply IHvalid; assumption.
|
|
|
|
|
|
|
|
apply ValidOrElim with p1 p2.
|
|
|
|
apply IHvalid1; assumption.
|
|
|
|
apply IHvalid2.
|
|
|
|
apply valid_weaken with hyps2.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
first_order.
|
|
|
|
apply IHvalid3.
|
|
|
|
apply valid_weaken with hyps2.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
first_order.
|
|
|
|
|
|
|
|
apply ValidImplyIntro.
|
|
|
|
apply IHvalid.
|
|
|
|
apply valid_weaken with hyps2.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
first_order.
|
|
|
|
|
|
|
|
apply ValidImplyElim with p1.
|
|
|
|
apply IHvalid1; assumption.
|
|
|
|
apply IHvalid2; assumption.
|
|
|
|
|
|
|
|
apply ValidExcludedMiddle.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Fixpoint varsOf (p : prop) : list var :=
|
|
|
|
match p with
|
|
|
|
| Truth
|
|
|
|
| Falsehood => []
|
|
|
|
| Var x => [x]
|
|
|
|
| And p1 p2
|
|
|
|
| Or p1 p2
|
|
|
|
| Imply p1 p2 => varsOf p1 ++ varsOf p2
|
|
|
|
end.
|
|
|
|
|
|
|
|
Lemma interp_valid'' : forall p hyps,
|
|
|
|
(forall x, In x (varsOf p) -> hyps (Var x) \/ hyps (Not (Var x)))
|
|
|
|
-> (forall x, hyps (Var x) -> ~hyps (Not (Var x)))
|
2022-02-01 02:02:31 +00:00
|
|
|
-> IFF interp (fun x => hyps (Var x)) p
|
2021-02-28 22:19:06 +00:00
|
|
|
then valid hyps p
|
|
|
|
else valid hyps (Not p).
|
|
|
|
Proof.
|
|
|
|
induct p; unfold IF_then_else; simplify.
|
|
|
|
|
|
|
|
left; propositional.
|
|
|
|
apply ValidTruthIntro.
|
|
|
|
|
|
|
|
right; propositional.
|
|
|
|
apply ValidImplyIntro.
|
|
|
|
apply ValidHyp.
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
specialize (H x); propositional.
|
|
|
|
left; propositional.
|
|
|
|
apply ValidHyp.
|
|
|
|
assumption.
|
|
|
|
right; first_order.
|
|
|
|
apply ValidHyp.
|
|
|
|
assumption.
|
|
|
|
|
|
|
|
excluded_middle (interp (fun x => hyps (Var x)) p1).
|
|
|
|
excluded_middle (interp (fun x => hyps (Var x)) p2).
|
|
|
|
left; propositional.
|
|
|
|
apply ValidAndIntro.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp1; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H3; propositional.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp2; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H3; propositional.
|
|
|
|
right; propositional.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp2; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H3; propositional.
|
|
|
|
apply ValidImplyIntro.
|
|
|
|
apply ValidImplyElim with p2.
|
|
|
|
apply valid_weaken with hyps.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
apply ValidAndElim2 with p1.
|
|
|
|
apply ValidHyp.
|
|
|
|
propositional.
|
|
|
|
right; propositional.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp1; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H2; propositional.
|
|
|
|
apply ValidImplyIntro.
|
|
|
|
apply ValidImplyElim with p1.
|
|
|
|
apply valid_weaken with hyps.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
apply ValidAndElim1 with p2.
|
|
|
|
apply ValidHyp.
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
excluded_middle (interp (fun x => hyps (Var x)) p1).
|
|
|
|
left; propositional.
|
|
|
|
apply ValidOrIntro1.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp1; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H2; propositional.
|
|
|
|
excluded_middle (interp (fun x => hyps (Var x)) p2).
|
|
|
|
left; propositional.
|
|
|
|
apply ValidOrIntro2.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp2; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H3; propositional.
|
|
|
|
right; propositional.
|
|
|
|
apply ValidImplyIntro.
|
|
|
|
apply ValidOrElim with p1 p2.
|
|
|
|
apply ValidHyp.
|
|
|
|
propositional.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp1; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H3; propositional.
|
|
|
|
apply ValidImplyElim with p1.
|
|
|
|
apply valid_weaken with hyps.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
apply ValidHyp.
|
|
|
|
propositional.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp2; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H3; propositional.
|
|
|
|
apply ValidImplyElim with p2.
|
|
|
|
apply valid_weaken with hyps.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
apply ValidHyp.
|
|
|
|
propositional.
|
|
|
|
|
|
|
|
excluded_middle (interp (fun x => hyps (Var x)) p1).
|
|
|
|
excluded_middle (interp (fun x => hyps (Var x)) p2).
|
|
|
|
left; propositional.
|
|
|
|
apply ValidImplyIntro.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp2; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H3; propositional.
|
|
|
|
apply valid_weaken with hyps.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
right; propositional.
|
|
|
|
apply ValidImplyIntro.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp1; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H3; propositional.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp2; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H4; propositional.
|
|
|
|
apply ValidImplyElim with p2.
|
|
|
|
apply valid_weaken with hyps.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
apply ValidImplyElim with p1.
|
|
|
|
apply ValidHyp.
|
|
|
|
propositional.
|
|
|
|
apply valid_weaken with hyps.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
left; propositional.
|
|
|
|
apply ValidImplyIntro.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply IHp1; propositional.
|
|
|
|
apply H.
|
|
|
|
apply in_or_app; propositional.
|
|
|
|
unfold IF_then_else in H2; propositional.
|
|
|
|
apply ValidFalsehoodElim.
|
|
|
|
apply ValidImplyElim with p1.
|
|
|
|
apply valid_weaken with hyps.
|
|
|
|
assumption.
|
|
|
|
propositional.
|
|
|
|
apply ValidHyp.
|
|
|
|
propositional.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma interp_valid' : forall p leftToDo alreadySplit,
|
|
|
|
(forall x, In x (varsOf p) -> In x (alreadySplit ++ leftToDo))
|
|
|
|
-> forall hyps, (forall x, In x alreadySplit -> hyps (Var x) \/ hyps (Not (Var x)))
|
|
|
|
-> (forall x, hyps (Var x) \/ hyps (Not (Var x)) -> In x alreadySplit)
|
|
|
|
-> (forall x, hyps (Var x) -> ~hyps (Not (Var x)))
|
|
|
|
-> (forall vars : var -> Prop,
|
|
|
|
(forall x, hyps (Var x) -> vars x)
|
|
|
|
-> (forall x, hyps (Not (Var x)) -> ~vars x)
|
|
|
|
-> interp vars p)
|
|
|
|
-> valid hyps p.
|
|
|
|
Proof.
|
|
|
|
induct leftToDo; simplify.
|
|
|
|
|
|
|
|
rewrite app_nil_r in H.
|
2022-02-01 02:02:31 +00:00
|
|
|
assert (IFF interp (fun x : var => hyps (Var x)) p then valid hyps p else valid hyps (Not p)).
|
2021-02-28 22:19:06 +00:00
|
|
|
apply interp_valid''; first_order.
|
|
|
|
unfold IF_then_else in H4; propositional.
|
|
|
|
exfalso.
|
|
|
|
apply H4.
|
|
|
|
apply H3.
|
|
|
|
propositional.
|
|
|
|
first_order.
|
|
|
|
|
|
|
|
excluded_middle (In a alreadySplit).
|
|
|
|
|
|
|
|
apply IHleftToDo with alreadySplit; simplify.
|
|
|
|
apply H in H5.
|
|
|
|
apply in_app_or in H5.
|
|
|
|
simplify.
|
|
|
|
apply in_or_app.
|
|
|
|
propositional; subst.
|
|
|
|
propositional.
|
|
|
|
first_order.
|
|
|
|
first_order.
|
|
|
|
first_order.
|
|
|
|
first_order.
|
|
|
|
|
|
|
|
apply ValidOrElim with (Var a) (Not (Var a)).
|
|
|
|
apply ValidExcludedMiddle.
|
|
|
|
|
|
|
|
apply IHleftToDo with (alreadySplit ++ [a]); simplify.
|
|
|
|
apply H in H5.
|
|
|
|
apply in_app_or in H5.
|
|
|
|
simplify.
|
|
|
|
apply in_or_app.
|
|
|
|
propositional; subst.
|
|
|
|
left; apply in_or_app; propositional.
|
|
|
|
left; apply in_or_app; simplify; propositional.
|
|
|
|
apply in_app_or in H5.
|
|
|
|
simplify.
|
|
|
|
propositional; subst.
|
|
|
|
apply H0 in H6.
|
|
|
|
propositional.
|
|
|
|
propositional.
|
|
|
|
propositional.
|
|
|
|
invert H5.
|
|
|
|
apply in_or_app.
|
|
|
|
simplify.
|
|
|
|
propositional.
|
|
|
|
apply in_or_app.
|
|
|
|
simplify.
|
|
|
|
first_order.
|
|
|
|
invert H5.
|
|
|
|
apply in_or_app.
|
|
|
|
simplify.
|
|
|
|
first_order.
|
|
|
|
propositional.
|
|
|
|
invert H5.
|
|
|
|
invert H7.
|
|
|
|
first_order.
|
|
|
|
invert H5.
|
|
|
|
first_order.
|
|
|
|
apply H3.
|
|
|
|
first_order.
|
|
|
|
first_order.
|
|
|
|
|
|
|
|
apply IHleftToDo with (alreadySplit ++ [a]); simplify.
|
|
|
|
apply H in H5.
|
|
|
|
apply in_app_or in H5.
|
|
|
|
simplify.
|
|
|
|
apply in_or_app.
|
|
|
|
propositional; subst.
|
|
|
|
left; apply in_or_app; propositional.
|
|
|
|
left; apply in_or_app; simplify; propositional.
|
|
|
|
apply in_app_or in H5.
|
|
|
|
simplify.
|
|
|
|
propositional; subst.
|
|
|
|
apply H0 in H6.
|
|
|
|
propositional.
|
|
|
|
propositional.
|
|
|
|
propositional.
|
|
|
|
invert H5.
|
|
|
|
apply in_or_app.
|
|
|
|
simplify.
|
|
|
|
first_order.
|
|
|
|
invert H5.
|
|
|
|
apply in_or_app.
|
|
|
|
simplify.
|
|
|
|
propositional.
|
|
|
|
apply in_or_app.
|
|
|
|
simplify.
|
|
|
|
first_order.
|
|
|
|
propositional.
|
|
|
|
invert H7.
|
|
|
|
invert H7.
|
|
|
|
invert H5.
|
|
|
|
first_order.
|
|
|
|
first_order.
|
|
|
|
apply H3.
|
|
|
|
first_order.
|
|
|
|
first_order.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Theorem interp_valid : forall p,
|
|
|
|
(forall vars, interp vars p)
|
|
|
|
-> valid (fun _ => False) p.
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
apply interp_valid' with (varsOf p) []; simplify; first_order.
|
|
|
|
Qed.
|
|
|
|
End PropositionalWithImplication.
|