2021-03-27 21:03:26 +00:00
|
|
|
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
|
|
|
* Chapter 12: More on Evaluation Contexts
|
|
|
|
* Author: Adam Chlipala
|
|
|
|
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
|
|
|
|
|
|
|
Require Import Frap.
|
|
|
|
|
|
|
|
|
2021-03-28 00:26:37 +00:00
|
|
|
(** * Evaluation Contexts for Lambda Calculus *)
|
|
|
|
|
|
|
|
(* Let's revisit the typed language from the end of the previous chapter, this
|
|
|
|
* time casting its small-step semantics using evaluation contexts. *)
|
|
|
|
|
2021-03-27 21:03:26 +00:00
|
|
|
Module Stlc.
|
|
|
|
Inductive exp : Set :=
|
|
|
|
| Var (x : var)
|
|
|
|
| Const (n : nat)
|
|
|
|
| Plus (e1 e2 : exp)
|
|
|
|
| Abs (x : var) (e1 : exp)
|
|
|
|
| App (e1 e2 : exp).
|
|
|
|
|
|
|
|
Inductive value : exp -> Prop :=
|
|
|
|
| VConst : forall n, value (Const n)
|
|
|
|
| VAbs : forall x e1, value (Abs x e1).
|
|
|
|
|
|
|
|
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
|
|
|
match e2 with
|
|
|
|
| Var y => if y ==v x then e1 else Var y
|
|
|
|
| Const n => Const n
|
|
|
|
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
|
|
|
|
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
end.
|
|
|
|
|
2021-03-28 00:26:37 +00:00
|
|
|
(* Here's the first difference from last chapter. This is our grammar of
|
|
|
|
* contexts. Note a difference from the book: we don't enforce here that
|
|
|
|
* the first argument of a [Plus1] or [App1] is a value, but rather that
|
|
|
|
* constraint comes in the next relation definition. *)
|
2021-03-27 21:03:26 +00:00
|
|
|
Inductive context : Set :=
|
|
|
|
| Hole : context
|
|
|
|
| Plus1 : context -> exp -> context
|
|
|
|
| Plus2 : exp -> context -> context
|
|
|
|
| App1 : context -> exp -> context
|
|
|
|
| App2 : exp -> context -> context.
|
|
|
|
|
2021-03-28 00:26:37 +00:00
|
|
|
(* Again, note how two of the rules include [value] premises. *)
|
2021-03-27 21:03:26 +00:00
|
|
|
Inductive plug : context -> exp -> exp -> Prop :=
|
|
|
|
| PlugHole : forall e, plug Hole e e
|
|
|
|
| PlugPlus1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Plus1 C e2) e (Plus e' e2)
|
|
|
|
| PlugPlus2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (Plus2 v1 C) e (Plus v1 e')
|
|
|
|
| PlugApp1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (App1 C e2) e (App e' e2)
|
|
|
|
| PlugApp2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (App2 v1 C) e (App v1 e').
|
|
|
|
|
|
|
|
(* Small-step, call-by-value evaluation, using our evaluation contexts *)
|
|
|
|
|
|
|
|
(* First: the primitive reductions *)
|
|
|
|
Inductive step0 : exp -> exp -> Prop :=
|
|
|
|
| Beta : forall x e v,
|
|
|
|
value v
|
|
|
|
-> step0 (App (Abs x e) v) (subst v x e)
|
|
|
|
| Add : forall n1 n2,
|
|
|
|
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)).
|
|
|
|
|
|
|
|
(* Then: running them in context *)
|
|
|
|
Inductive step : exp -> exp -> Prop :=
|
|
|
|
| StepRule : forall C e1 e2 e1' e2',
|
|
|
|
plug C e1 e1'
|
|
|
|
-> plug C e2 e2'
|
|
|
|
-> step0 e1 e2
|
|
|
|
-> step e1' e2'.
|
|
|
|
|
|
|
|
(* It's easy to wrap everything as a transition system. *)
|
|
|
|
Definition trsys_of (e : exp) := {|
|
|
|
|
Initial := {e};
|
|
|
|
Step := step
|
|
|
|
|}.
|
|
|
|
|
|
|
|
|
|
|
|
(* Typing details are the same as last chapter. *)
|
|
|
|
Inductive type :=
|
|
|
|
| Nat (* Numbers *)
|
|
|
|
| Fun (dom ran : type) (* Functions *).
|
|
|
|
|
|
|
|
Inductive hasty : fmap var type -> exp -> type -> Prop :=
|
|
|
|
| HtVar : forall G x t,
|
|
|
|
G $? x = Some t
|
|
|
|
-> hasty G (Var x) t
|
|
|
|
| HtConst : forall G n,
|
|
|
|
hasty G (Const n) Nat
|
|
|
|
| HtPlus : forall G e1 e2,
|
|
|
|
hasty G e1 Nat
|
|
|
|
-> hasty G e2 Nat
|
|
|
|
-> hasty G (Plus e1 e2) Nat
|
|
|
|
| HtAbs : forall G x e1 t1 t2,
|
|
|
|
hasty (G $+ (x, t1)) e1 t2
|
|
|
|
-> hasty G (Abs x e1) (Fun t1 t2)
|
|
|
|
| HtApp : forall G e1 e2 t1 t2,
|
|
|
|
hasty G e1 (Fun t1 t2)
|
|
|
|
-> hasty G e2 t1
|
|
|
|
-> hasty G (App e1 e2) t2.
|
|
|
|
|
|
|
|
Local Hint Constructors value plug step0 step hasty : core.
|
|
|
|
|
|
|
|
(** * Now we adapt the automated proof of type soundness. *)
|
|
|
|
|
|
|
|
Ltac t0 := match goal with
|
|
|
|
| [ H : ex _ |- _ ] => invert H
|
|
|
|
| [ H : _ /\ _ |- _ ] => invert H
|
|
|
|
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
|
|
|
|
| [ H : Some _ = Some _ |- _ ] => invert H
|
|
|
|
|
|
|
|
| [ H : step _ _ |- _ ] => invert H
|
|
|
|
| [ H : step0 _ _ |- _ ] => invert1 H
|
|
|
|
| [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H
|
|
|
|
| [ H : hasty _ _ _ |- _ ] => invert1 H
|
|
|
|
| [ H : plug _ _ _ |- _ ] => invert1 H
|
|
|
|
end; subst.
|
|
|
|
|
|
|
|
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6.
|
|
|
|
|
|
|
|
Lemma progress : forall e t,
|
|
|
|
hasty $0 e t
|
|
|
|
-> value e
|
|
|
|
\/ (exists e' : exp, step e e').
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
|
|
|
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
|
|
|
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
|
|
|
-> G' $+ (x, t) $? x' = Some t').
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
cases (x ==v x'); simplify; eauto.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve weakening_override : core.
|
|
|
|
|
|
|
|
Lemma weakening : forall G e t,
|
|
|
|
hasty G e t
|
|
|
|
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
|
|
|
-> hasty G' e t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve weakening : core.
|
|
|
|
|
|
|
|
(* Replacing a typing context with an equal one has no effect (useful to guide
|
|
|
|
* proof search as a hint). *)
|
|
|
|
Lemma hasty_change : forall G e t,
|
|
|
|
hasty G e t
|
|
|
|
-> forall G', G' = G
|
|
|
|
-> hasty G' e t.
|
|
|
|
Proof.
|
|
|
|
t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve hasty_change : core.
|
|
|
|
|
|
|
|
Lemma substitution : forall G x t' e t e',
|
|
|
|
hasty (G $+ (x, t')) e t
|
|
|
|
-> hasty $0 e' t'
|
|
|
|
-> hasty G (subst e' x e) t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve substitution : core.
|
|
|
|
|
|
|
|
Lemma preservation0 : forall e1 e2,
|
|
|
|
step0 e1 e2
|
|
|
|
-> forall t, hasty $0 e1 t
|
|
|
|
-> hasty $0 e2 t.
|
|
|
|
Proof.
|
|
|
|
invert 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve preservation0 : core.
|
|
|
|
|
2021-03-27 21:15:22 +00:00
|
|
|
Lemma preservation' : forall C e1 e1',
|
|
|
|
plug C e1 e1'
|
|
|
|
-> forall e2 e2' t, plug C e2 e2'
|
|
|
|
-> step0 e1 e2
|
|
|
|
-> hasty $0 e1' t
|
|
|
|
-> hasty $0 e2' t.
|
2021-03-27 21:03:26 +00:00
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
2021-03-27 21:15:22 +00:00
|
|
|
Local Hint Resolve preservation' : core.
|
|
|
|
|
2021-03-27 21:03:26 +00:00
|
|
|
Lemma preservation : forall e1 e2,
|
|
|
|
step e1 e2
|
|
|
|
-> forall t, hasty $0 e1 t
|
|
|
|
-> hasty $0 e2 t.
|
|
|
|
Proof.
|
|
|
|
invert 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve progress preservation : core.
|
|
|
|
|
|
|
|
Theorem safety : forall e t, hasty $0 e t
|
|
|
|
-> invariantFor (trsys_of e)
|
|
|
|
(fun e' => value e'
|
|
|
|
\/ exists e'', step e' e'').
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
|
|
|
|
apply invariant_induction; simplify; eauto; equality.
|
|
|
|
Qed.
|
2021-03-28 00:26:37 +00:00
|
|
|
|
|
|
|
(* It may not be obvious that this way of defining the semantics gives us a
|
|
|
|
* unique evaluation sequence for every well-typed program. Let's prove
|
|
|
|
* it. *)
|
|
|
|
|
|
|
|
Lemma plug_not_value : forall C e v,
|
|
|
|
value v
|
|
|
|
-> plug C e v
|
|
|
|
-> C = Hole /\ e = v.
|
|
|
|
Proof.
|
|
|
|
invert 1; invert 1; auto.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma step0_value : forall v e,
|
|
|
|
value v
|
|
|
|
-> step0 v e
|
|
|
|
-> False.
|
|
|
|
Proof.
|
|
|
|
invert 1; invert 1.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma plug_det : forall C e1 e2 e1' f1 f1',
|
|
|
|
step0 e1 e1'
|
|
|
|
-> step0 f1 f1'
|
|
|
|
-> plug C e1 e2
|
|
|
|
-> forall C', plug C' f1 e2
|
|
|
|
-> C = C' /\ e1 = f1.
|
|
|
|
Proof.
|
|
|
|
induct 3; invert 1;
|
|
|
|
repeat match goal with
|
|
|
|
| [ H : step0 _ _ |- _ ] => invert1 H
|
|
|
|
| [ H : plug _ _ _ |- _ ] => eapply plug_not_value in H; [ | solve [ eauto ] ];
|
|
|
|
propositional; subst
|
|
|
|
| [ IH : step0 _ _ -> _, H : plug _ _ _ |- _ ] => eapply IH in H; [ | solve [ auto ] ];
|
|
|
|
equality
|
|
|
|
| [ _ : value ?v, _ : step0 ?v _ |- _ ] => exfalso; eapply step0_value; eauto
|
|
|
|
end; equality.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma step0_det : forall e e', step0 e e'
|
|
|
|
-> forall e'', step0 e e''
|
|
|
|
-> e' = e''.
|
|
|
|
Proof.
|
|
|
|
invert 1; invert 1; auto.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma plug_func : forall C e e1,
|
|
|
|
plug C e e1
|
|
|
|
-> forall e2, plug C e e2
|
|
|
|
-> e1 = e2.
|
|
|
|
Proof.
|
|
|
|
induct 1; invert 1; auto; f_equal; auto.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Theorem deterministic : forall e e', step e e'
|
|
|
|
-> forall e'', step e e''
|
|
|
|
-> e' = e''.
|
|
|
|
Proof.
|
|
|
|
invert 1; invert 1.
|
|
|
|
|
|
|
|
assert (C = C0 /\ e1 = e0) by (eapply plug_det; eassumption).
|
|
|
|
propositional; subst.
|
|
|
|
assert (e2 = e3) by (eapply step0_det; eassumption).
|
|
|
|
subst.
|
|
|
|
eapply plug_func; eassumption.
|
|
|
|
Qed.
|
2021-03-27 21:03:26 +00:00
|
|
|
End Stlc.
|
2021-03-28 17:28:34 +00:00
|
|
|
|
|
|
|
(** * Some More Classic Features *)
|
|
|
|
|
|
|
|
(* Here's how easy it is to extend those definitions and proofs to two other
|
|
|
|
* common features of functional-programming languages. We'll use comments to
|
|
|
|
* mark the only places where code is added. Very little old code needs to be
|
|
|
|
* changed! The version in the book PDF shows even more clearly how evaluation
|
|
|
|
* contexts make for compact descriptions of features, since here we are
|
|
|
|
* manually writing [plug] relations, following clear conventions in
|
|
|
|
* evaluation-context grammars. *)
|
|
|
|
|
|
|
|
Module StlcPairs.
|
|
|
|
Inductive exp : Set :=
|
|
|
|
| Var (x : var)
|
|
|
|
| Const (n : nat)
|
|
|
|
| Plus (e1 e2 : exp)
|
|
|
|
| Abs (x : var) (e1 : exp)
|
|
|
|
| App (e1 e2 : exp)
|
|
|
|
|
|
|
|
(* We can combine two values together into a pair, and then we can use
|
|
|
|
* projection functions to retrieve the first and second components,
|
|
|
|
* respectively. *)
|
|
|
|
| Pair (e1 e2 : exp)
|
|
|
|
| Fst (e1 : exp)
|
|
|
|
| Snd (e2 : exp).
|
|
|
|
|
|
|
|
Inductive value : exp -> Prop :=
|
|
|
|
| VConst : forall n, value (Const n)
|
|
|
|
| VAbs : forall x e1, value (Abs x e1)
|
|
|
|
(* A pair of values is a value. (Now this relation finally becomes
|
|
|
|
* recursive.) *)
|
|
|
|
| VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2).
|
|
|
|
|
|
|
|
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
|
|
|
match e2 with
|
|
|
|
| Var y => if y ==v x then e1 else Var y
|
|
|
|
| Const n => Const n
|
|
|
|
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
|
|
|
|
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
(* Some bureaucratic work here to add predictable cases *)
|
|
|
|
| Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
| Fst e2' => Fst (subst e1 x e2')
|
|
|
|
| Snd e2' => Snd (subst e1 x e2')
|
|
|
|
end.
|
|
|
|
|
|
|
|
Inductive context : Set :=
|
|
|
|
| Hole : context
|
|
|
|
| Plus1 : context -> exp -> context
|
|
|
|
| Plus2 : exp -> context -> context
|
|
|
|
| App1 : context -> exp -> context
|
|
|
|
| App2 : exp -> context -> context
|
|
|
|
(* Two new context kinds, indicating left-to-right evaluation order for
|
|
|
|
* pairs *)
|
|
|
|
| Pair1 : context -> exp -> context
|
|
|
|
| Pair2 : exp -> context -> context
|
|
|
|
(* And similar for projections *)
|
|
|
|
| Fst1 : context -> context
|
|
|
|
| Snd1 : context -> context.
|
|
|
|
|
|
|
|
Inductive plug : context -> exp -> exp -> Prop :=
|
|
|
|
| PlugHole : forall e, plug Hole e e
|
|
|
|
| PlugPlus1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Plus1 C e2) e (Plus e' e2)
|
|
|
|
| PlugPlus2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (Plus2 v1 C) e (Plus v1 e')
|
|
|
|
| PlugApp1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (App1 C e2) e (App e' e2)
|
|
|
|
| PlugApp2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (App2 v1 C) e (App v1 e')
|
|
|
|
|
|
|
|
(* Our new plugging rules *)
|
|
|
|
| PlugPair1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Pair1 C e2) e (Pair e' e2)
|
|
|
|
| PlugPair2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (Pair2 v1 C) e (Pair v1 e')
|
|
|
|
| PlugFst1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Fst1 C) e (Fst e')
|
|
|
|
| PlugSnd1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Snd1 C) e (Snd e').
|
|
|
|
|
|
|
|
Inductive step0 : exp -> exp -> Prop :=
|
|
|
|
| Beta : forall x e v,
|
|
|
|
value v
|
|
|
|
-> step0 (App (Abs x e) v) (subst v x e)
|
|
|
|
| Add : forall n1 n2,
|
|
|
|
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2))
|
|
|
|
|
|
|
|
(* Reducing projections *)
|
|
|
|
| FstPair : forall v1 v2,
|
|
|
|
value v1
|
|
|
|
-> value v2
|
|
|
|
-> step0 (Fst (Pair v1 v2)) v1
|
|
|
|
| SndPair : forall v1 v2,
|
|
|
|
value v1
|
|
|
|
-> value v2
|
|
|
|
-> step0 (Snd (Pair v1 v2)) v2.
|
|
|
|
|
|
|
|
Inductive step : exp -> exp -> Prop :=
|
|
|
|
| StepRule : forall C e1 e2 e1' e2',
|
|
|
|
plug C e1 e1'
|
|
|
|
-> plug C e2 e2'
|
|
|
|
-> step0 e1 e2
|
|
|
|
-> step e1' e2'.
|
|
|
|
|
|
|
|
Definition trsys_of (e : exp) := {|
|
|
|
|
Initial := {e};
|
|
|
|
Step := step
|
|
|
|
|}.
|
|
|
|
|
|
|
|
|
|
|
|
Inductive type :=
|
|
|
|
| Nat
|
|
|
|
| Fun (dom ran : type)
|
|
|
|
| Prod (t1 t2 : type) (* "Prod" for "product," as in Cartesian product *).
|
|
|
|
|
|
|
|
Inductive hasty : fmap var type -> exp -> type -> Prop :=
|
|
|
|
| HtVar : forall G x t,
|
|
|
|
G $? x = Some t
|
|
|
|
-> hasty G (Var x) t
|
|
|
|
| HtConst : forall G n,
|
|
|
|
hasty G (Const n) Nat
|
|
|
|
| HtPlus : forall G e1 e2,
|
|
|
|
hasty G e1 Nat
|
|
|
|
-> hasty G e2 Nat
|
|
|
|
-> hasty G (Plus e1 e2) Nat
|
|
|
|
| HtAbs : forall G x e1 t1 t2,
|
|
|
|
hasty (G $+ (x, t1)) e1 t2
|
|
|
|
-> hasty G (Abs x e1) (Fun t1 t2)
|
|
|
|
| HtApp : forall G e1 e2 t1 t2,
|
|
|
|
hasty G e1 (Fun t1 t2)
|
|
|
|
-> hasty G e2 t1
|
|
|
|
-> hasty G (App e1 e2) t2
|
|
|
|
| HtPair : forall G e1 e2 t1 t2,
|
|
|
|
hasty G e1 t1
|
|
|
|
-> hasty G e2 t2
|
|
|
|
-> hasty G (Pair e1 e2) (Prod t1 t2)
|
|
|
|
| HtFst : forall G e1 t1 t2,
|
|
|
|
hasty G e1 (Prod t1 t2)
|
|
|
|
-> hasty G (Fst e1) t1
|
|
|
|
| HtSnd : forall G e1 t1 t2,
|
|
|
|
hasty G e1 (Prod t1 t2)
|
|
|
|
-> hasty G (Snd e1) t2.
|
|
|
|
|
|
|
|
Local Hint Constructors value plug step0 step hasty : core.
|
|
|
|
|
|
|
|
Ltac t0 := match goal with
|
|
|
|
| [ H : ex _ |- _ ] => invert H
|
|
|
|
| [ H : _ /\ _ |- _ ] => invert H
|
|
|
|
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
|
|
|
|
| [ H : Some _ = Some _ |- _ ] => invert H
|
|
|
|
|
|
|
|
| [ H : step _ _ |- _ ] => invert H
|
|
|
|
| [ H : step0 _ _ |- _ ] => invert1 H
|
|
|
|
| [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; []
|
|
|
|
(* Change here! We need to enforce there is at most one
|
|
|
|
* remaining subgoal, or we'll keep doing useless [value]
|
|
|
|
* inversions ad infinitum. *)
|
|
|
|
| [ H : hasty _ _ _ |- _ ] => invert1 H
|
|
|
|
| [ H : plug _ _ _ |- _ ] => invert1 H
|
|
|
|
end; subst.
|
|
|
|
|
|
|
|
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6.
|
|
|
|
|
|
|
|
Lemma progress : forall e t,
|
|
|
|
hasty $0 e t
|
|
|
|
-> value e
|
|
|
|
\/ (exists e' : exp, step e e').
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
|
|
|
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
|
|
|
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
|
|
|
-> G' $+ (x, t) $? x' = Some t').
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
cases (x ==v x'); simplify; eauto.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve weakening_override : core.
|
|
|
|
|
|
|
|
Lemma weakening : forall G e t,
|
|
|
|
hasty G e t
|
|
|
|
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
|
|
|
-> hasty G' e t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve weakening : core.
|
|
|
|
|
|
|
|
(* Replacing a typing context with an equal one has no effect (useful to guide
|
|
|
|
* proof search as a hint). *)
|
|
|
|
Lemma hasty_change : forall G e t,
|
|
|
|
hasty G e t
|
|
|
|
-> forall G', G' = G
|
|
|
|
-> hasty G' e t.
|
|
|
|
Proof.
|
|
|
|
t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve hasty_change : core.
|
|
|
|
|
|
|
|
Lemma substitution : forall G x t' e t e',
|
|
|
|
hasty (G $+ (x, t')) e t
|
|
|
|
-> hasty $0 e' t'
|
|
|
|
-> hasty G (subst e' x e) t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve substitution : core.
|
|
|
|
|
|
|
|
Lemma preservation0 : forall e1 e2,
|
|
|
|
step0 e1 e2
|
|
|
|
-> forall t, hasty $0 e1 t
|
|
|
|
-> hasty $0 e2 t.
|
|
|
|
Proof.
|
|
|
|
invert 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve preservation0 : core.
|
|
|
|
|
|
|
|
Lemma preservation' : forall C e1 e1',
|
|
|
|
plug C e1 e1'
|
|
|
|
-> forall e2 e2' t, plug C e2 e2'
|
|
|
|
-> step0 e1 e2
|
|
|
|
-> hasty $0 e1' t
|
|
|
|
-> hasty $0 e2' t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve preservation' : core.
|
|
|
|
|
|
|
|
Lemma preservation : forall e1 e2,
|
|
|
|
step e1 e2
|
|
|
|
-> forall t, hasty $0 e1 t
|
|
|
|
-> hasty $0 e2 t.
|
|
|
|
Proof.
|
|
|
|
invert 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve progress preservation : core.
|
|
|
|
|
|
|
|
Theorem safety : forall e t, hasty $0 e t
|
|
|
|
-> invariantFor (trsys_of e)
|
|
|
|
(fun e' => value e'
|
|
|
|
\/ exists e'', step e' e'').
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
|
|
|
|
apply invariant_induction; simplify; eauto; equality.
|
|
|
|
Qed.
|
|
|
|
End StlcPairs.
|
|
|
|
|
|
|
|
(* Next, the dual feature of *variants*, corresponding to the following type
|
|
|
|
* family from Coq's standard library. *)
|
|
|
|
|
|
|
|
Print sum.
|
|
|
|
|
|
|
|
Module StlcSums.
|
|
|
|
Inductive exp : Set :=
|
|
|
|
| Var (x : var)
|
|
|
|
| Const (n : nat)
|
|
|
|
| Plus (e1 e2 : exp)
|
|
|
|
| Abs (x : var) (e1 : exp)
|
|
|
|
| App (e1 e2 : exp)
|
|
|
|
| Pair (e1 e2 : exp)
|
|
|
|
| Fst (e1 : exp)
|
|
|
|
| Snd (e2 : exp)
|
|
|
|
|
|
|
|
(* New cases: *)
|
|
|
|
| Inl (e1 : exp)
|
|
|
|
| Inr (e2 : exp)
|
|
|
|
| Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp).
|
|
|
|
(* The last one roughly means "match e' with inl x1 => e1 | inr x2 => e2". *)
|
|
|
|
|
|
|
|
Inductive value : exp -> Prop :=
|
|
|
|
| VConst : forall n, value (Const n)
|
|
|
|
| VAbs : forall x e1, value (Abs x e1)
|
|
|
|
| VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2)
|
|
|
|
| VInl : forall v, value v -> value (Inl v)
|
|
|
|
| VInr : forall v, value v -> value (Inr v).
|
|
|
|
|
|
|
|
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
|
|
|
match e2 with
|
|
|
|
| Var y => if y ==v x then e1 else Var y
|
|
|
|
| Const n => Const n
|
|
|
|
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
|
|
|
|
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
| Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
| Fst e2' => Fst (subst e1 x e2')
|
|
|
|
| Snd e2' => Snd (subst e1 x e2')
|
|
|
|
(* Some bureaucratic work here to add predictable cases *)
|
|
|
|
| Inl e2' => Inl (subst e1 x e2')
|
|
|
|
| Inr e2' => Inr (subst e1 x e2')
|
|
|
|
| Match e2' x1 e21 x2 e22 => Match (subst e1 x e2')
|
|
|
|
x1 (if x1 ==v x then e21 else subst e1 x e21)
|
|
|
|
x2 (if x2 ==v x then e22 else subst e1 x e22)
|
|
|
|
end.
|
|
|
|
|
|
|
|
Inductive context : Set :=
|
|
|
|
| Hole : context
|
|
|
|
| Plus1 : context -> exp -> context
|
|
|
|
| Plus2 : exp -> context -> context
|
|
|
|
| App1 : context -> exp -> context
|
|
|
|
| App2 : exp -> context -> context
|
|
|
|
| Pair1 : context -> exp -> context
|
|
|
|
| Pair2 : exp -> context -> context
|
|
|
|
| Fst1 : context -> context
|
|
|
|
| Snd1 : context -> context
|
|
|
|
|
|
|
|
(* New cases: *)
|
|
|
|
| Inl1 : context -> context
|
|
|
|
| Inr1 : context -> context
|
|
|
|
| Match1 : context -> var -> exp -> var -> exp -> context.
|
|
|
|
|
|
|
|
Inductive plug : context -> exp -> exp -> Prop :=
|
|
|
|
| PlugHole : forall e, plug Hole e e
|
|
|
|
| PlugPlus1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Plus1 C e2) e (Plus e' e2)
|
|
|
|
| PlugPlus2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (Plus2 v1 C) e (Plus v1 e')
|
|
|
|
| PlugApp1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (App1 C e2) e (App e' e2)
|
|
|
|
| PlugApp2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (App2 v1 C) e (App v1 e')
|
|
|
|
| PlugPair1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Pair1 C e2) e (Pair e' e2)
|
|
|
|
| PlugPair2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (Pair2 v1 C) e (Pair v1 e')
|
|
|
|
| PlugFst1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Fst1 C) e (Fst e')
|
|
|
|
| PlugSnd1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Snd1 C) e (Snd e')
|
|
|
|
|
|
|
|
(* Our new plugging rules *)
|
|
|
|
| PlugInl1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Inl1 C) e (Inl e')
|
|
|
|
| PlugInr1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Inr1 C) e (Inr e')
|
|
|
|
| PluMatch1 : forall e e' C x1 e1 x2 e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2).
|
|
|
|
|
|
|
|
Inductive step0 : exp -> exp -> Prop :=
|
|
|
|
| Beta : forall x e v,
|
|
|
|
value v
|
|
|
|
-> step0 (App (Abs x e) v) (subst v x e)
|
|
|
|
| Add : forall n1 n2,
|
|
|
|
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2))
|
|
|
|
| FstPair : forall v1 v2,
|
|
|
|
value v1
|
|
|
|
-> value v2
|
|
|
|
-> step0 (Fst (Pair v1 v2)) v1
|
|
|
|
| SndPair : forall v1 v2,
|
|
|
|
value v1
|
|
|
|
-> value v2
|
|
|
|
-> step0 (Snd (Pair v1 v2)) v2
|
|
|
|
|
|
|
|
(* Reducing a [Match] *)
|
|
|
|
| MatchInl : forall v x1 e1 x2 e2,
|
|
|
|
value v
|
|
|
|
-> step0 (Match (Inl v) x1 e1 x2 e2) (subst v x1 e1)
|
|
|
|
| MatchInr : forall v x1 e1 x2 e2,
|
|
|
|
value v
|
|
|
|
-> step0 (Match (Inr v) x1 e1 x2 e2) (subst v x2 e2).
|
|
|
|
|
|
|
|
Inductive step : exp -> exp -> Prop :=
|
|
|
|
| StepRule : forall C e1 e2 e1' e2',
|
|
|
|
plug C e1 e1'
|
|
|
|
-> plug C e2 e2'
|
|
|
|
-> step0 e1 e2
|
|
|
|
-> step e1' e2'.
|
|
|
|
|
|
|
|
Definition trsys_of (e : exp) := {|
|
|
|
|
Initial := {e};
|
|
|
|
Step := step
|
|
|
|
|}.
|
|
|
|
|
|
|
|
|
|
|
|
Inductive type :=
|
|
|
|
| Nat
|
|
|
|
| Fun (dom ran : type)
|
|
|
|
| Prod (t1 t2 : type)
|
|
|
|
(* New case: *)
|
|
|
|
| Sum (t1 t2 : type).
|
|
|
|
|
|
|
|
Inductive hasty : fmap var type -> exp -> type -> Prop :=
|
|
|
|
| HtVar : forall G x t,
|
|
|
|
G $? x = Some t
|
|
|
|
-> hasty G (Var x) t
|
|
|
|
| HtConst : forall G n,
|
|
|
|
hasty G (Const n) Nat
|
|
|
|
| HtPlus : forall G e1 e2,
|
|
|
|
hasty G e1 Nat
|
|
|
|
-> hasty G e2 Nat
|
|
|
|
-> hasty G (Plus e1 e2) Nat
|
|
|
|
| HtAbs : forall G x e1 t1 t2,
|
|
|
|
hasty (G $+ (x, t1)) e1 t2
|
|
|
|
-> hasty G (Abs x e1) (Fun t1 t2)
|
|
|
|
| HtApp : forall G e1 e2 t1 t2,
|
|
|
|
hasty G e1 (Fun t1 t2)
|
|
|
|
-> hasty G e2 t1
|
|
|
|
-> hasty G (App e1 e2) t2
|
|
|
|
| HtPair : forall G e1 e2 t1 t2,
|
|
|
|
hasty G e1 t1
|
|
|
|
-> hasty G e2 t2
|
|
|
|
-> hasty G (Pair e1 e2) (Prod t1 t2)
|
|
|
|
| HtFst : forall G e1 t1 t2,
|
|
|
|
hasty G e1 (Prod t1 t2)
|
|
|
|
-> hasty G (Fst e1) t1
|
|
|
|
| HtSnd : forall G e1 t1 t2,
|
|
|
|
hasty G e1 (Prod t1 t2)
|
|
|
|
-> hasty G (Snd e1) t2
|
|
|
|
|
|
|
|
(* New cases: *)
|
|
|
|
| HtInl : forall G e1 t1 t2,
|
|
|
|
hasty G e1 t1
|
|
|
|
-> hasty G (Inl e1) (Sum t1 t2)
|
|
|
|
| HtInr : forall G e1 t1 t2,
|
|
|
|
hasty G e1 t2
|
|
|
|
-> hasty G (Inr e1) (Sum t1 t2)
|
|
|
|
| HtMatch : forall G e t1 t2 x1 e1 x2 e2 t,
|
|
|
|
hasty G e (Sum t1 t2)
|
|
|
|
-> hasty (G $+ (x1, t1)) e1 t
|
|
|
|
-> hasty (G $+ (x2, t2)) e2 t
|
|
|
|
-> hasty G (Match e x1 e1 x2 e2) t.
|
|
|
|
|
|
|
|
Local Hint Constructors value plug step0 step hasty : core.
|
|
|
|
|
|
|
|
Ltac t0 := match goal with
|
|
|
|
| [ H : ex _ |- _ ] => invert H
|
|
|
|
| [ H : _ /\ _ |- _ ] => invert H
|
|
|
|
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
|
|
|
|
| [ H : Some _ = Some _ |- _ ] => invert H
|
|
|
|
|
|
|
|
| [ H : step _ _ |- _ ] => invert H
|
|
|
|
| [ H : step0 _ _ |- _ ] => invert1 H
|
|
|
|
| [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; []
|
|
|
|
|
|
|
|
(* New case! For sums, we sometimes need to consider two rules for
|
|
|
|
* one [value] inversion. *)
|
|
|
|
| [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; [|]
|
|
|
|
|
|
|
|
| [ H : hasty _ _ _ |- _ ] => invert1 H
|
|
|
|
| [ H : plug _ _ _ |- _ ] => invert1 H
|
|
|
|
end; subst.
|
|
|
|
|
|
|
|
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 7.
|
|
|
|
(* change! --^ *)
|
|
|
|
|
|
|
|
Lemma progress : forall e t,
|
|
|
|
hasty $0 e t
|
|
|
|
-> value e
|
|
|
|
\/ (exists e' : exp, step e e').
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
|
|
|
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
|
|
|
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
|
|
|
-> G' $+ (x, t) $? x' = Some t').
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
cases (x ==v x'); simplify; eauto.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve weakening_override : core.
|
|
|
|
|
|
|
|
Lemma weakening : forall G e t,
|
|
|
|
hasty G e t
|
|
|
|
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
|
|
|
-> hasty G' e t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve weakening : core.
|
|
|
|
|
|
|
|
(* Replacing a typing context with an equal one has no effect (useful to guide
|
|
|
|
* proof search as a hint). *)
|
|
|
|
Lemma hasty_change : forall G e t,
|
|
|
|
hasty G e t
|
|
|
|
-> forall G', G' = G
|
|
|
|
-> hasty G' e t.
|
|
|
|
Proof.
|
|
|
|
t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve hasty_change : core.
|
|
|
|
|
|
|
|
Lemma substitution : forall G x t' e t e',
|
|
|
|
hasty (G $+ (x, t')) e t
|
|
|
|
-> hasty $0 e' t'
|
|
|
|
-> hasty G (subst e' x e) t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve substitution : core.
|
|
|
|
|
|
|
|
Lemma preservation0 : forall e1 e2,
|
|
|
|
step0 e1 e2
|
|
|
|
-> forall t, hasty $0 e1 t
|
|
|
|
-> hasty $0 e2 t.
|
|
|
|
Proof.
|
|
|
|
invert 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve preservation0 : core.
|
|
|
|
|
|
|
|
Lemma preservation' : forall C e1 e1',
|
|
|
|
plug C e1 e1'
|
|
|
|
-> forall e2 e2' t, plug C e2 e2'
|
|
|
|
-> step0 e1 e2
|
|
|
|
-> hasty $0 e1' t
|
|
|
|
-> hasty $0 e2' t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve preservation' : core.
|
|
|
|
|
|
|
|
Lemma preservation : forall e1 e2,
|
|
|
|
step e1 e2
|
|
|
|
-> forall t, hasty $0 e1 t
|
|
|
|
-> hasty $0 e2 t.
|
|
|
|
Proof.
|
|
|
|
invert 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve progress preservation : core.
|
|
|
|
|
|
|
|
Theorem safety : forall e t, hasty $0 e t
|
|
|
|
-> invariantFor (trsys_of e)
|
|
|
|
(fun e' => value e'
|
|
|
|
\/ exists e'', step e' e'').
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
|
|
|
|
apply invariant_induction; simplify; eauto; equality.
|
|
|
|
Qed.
|
|
|
|
End StlcSums.
|
2021-03-28 18:51:12 +00:00
|
|
|
|
|
|
|
|
|
|
|
(** * Mutable Variables *)
|
|
|
|
|
|
|
|
(* Let's show how to add in another classic language feature, showing off how
|
|
|
|
* abstracting with the idea of evaluation contexts saves us a lot of effort
|
|
|
|
* adapting old definitions. So far, variables have been read-only, but we can
|
|
|
|
* easily enough make them mutable. The types of some of our relations will
|
|
|
|
* change, but surprisingly much will remain intact. *)
|
|
|
|
|
|
|
|
Module StlcMutable.
|
|
|
|
Inductive exp : Set :=
|
|
|
|
| Var (x : var)
|
|
|
|
| Const (n : nat)
|
|
|
|
| Plus (e1 e2 : exp)
|
|
|
|
| Abs (x : var) (e1 : exp)
|
|
|
|
| App (e1 e2 : exp)
|
|
|
|
| Pair (e1 e2 : exp)
|
|
|
|
| Fst (e1 : exp)
|
|
|
|
| Snd (e2 : exp)
|
|
|
|
| Inl (e1 : exp)
|
|
|
|
| Inr (e2 : exp)
|
|
|
|
| Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp)
|
|
|
|
|
|
|
|
(* New cases: *)
|
|
|
|
| GetVar (x : var)
|
|
|
|
| SetVar (x : var) (e : exp).
|
|
|
|
(* Note that we are distinguishing between mutable and immutable variables,
|
|
|
|
* keeping the latter to bind in [Abs] and [Match]. *)
|
|
|
|
|
|
|
|
Inductive value : exp -> Prop :=
|
|
|
|
| VConst : forall n, value (Const n)
|
|
|
|
| VAbs : forall x e1, value (Abs x e1)
|
|
|
|
| VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2)
|
|
|
|
| VInl : forall v, value v -> value (Inl v)
|
|
|
|
| VInr : forall v, value v -> value (Inr v).
|
|
|
|
|
|
|
|
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
|
|
|
match e2 with
|
|
|
|
| Var y => if y ==v x then e1 else Var y
|
|
|
|
| Const n => Const n
|
|
|
|
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
|
|
|
|
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
| Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'')
|
|
|
|
| Fst e2' => Fst (subst e1 x e2')
|
|
|
|
| Snd e2' => Snd (subst e1 x e2')
|
|
|
|
| Inl e2' => Inl (subst e1 x e2')
|
|
|
|
| Inr e2' => Inr (subst e1 x e2')
|
|
|
|
| Match e2' x1 e21 x2 e22 => Match (subst e1 x e2')
|
|
|
|
x1 (if x1 ==v x then e21 else subst e1 x e21)
|
|
|
|
x2 (if x2 ==v x then e22 else subst e1 x e22)
|
|
|
|
| GetVar y => GetVar y
|
|
|
|
| SetVar y e2' => SetVar y (subst e1 x e2')
|
|
|
|
end.
|
|
|
|
|
|
|
|
Inductive context : Set :=
|
|
|
|
| Hole : context
|
|
|
|
| Plus1 : context -> exp -> context
|
|
|
|
| Plus2 : exp -> context -> context
|
|
|
|
| App1 : context -> exp -> context
|
|
|
|
| App2 : exp -> context -> context
|
|
|
|
| Pair1 : context -> exp -> context
|
|
|
|
| Pair2 : exp -> context -> context
|
|
|
|
| Fst1 : context -> context
|
|
|
|
| Snd1 : context -> context
|
|
|
|
| Inl1 : context -> context
|
|
|
|
| Inr1 : context -> context
|
|
|
|
| Match1 : context -> var -> exp -> var -> exp -> context
|
|
|
|
(* New case: *)
|
|
|
|
| SetVar1 : var -> context -> context.
|
|
|
|
|
|
|
|
Inductive plug : context -> exp -> exp -> Prop :=
|
|
|
|
| PlugHole : forall e, plug Hole e e
|
|
|
|
| PlugPlus1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Plus1 C e2) e (Plus e' e2)
|
|
|
|
| PlugPlus2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (Plus2 v1 C) e (Plus v1 e')
|
|
|
|
| PlugApp1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (App1 C e2) e (App e' e2)
|
|
|
|
| PlugApp2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (App2 v1 C) e (App v1 e')
|
|
|
|
| PlugPair1 : forall e e' C e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Pair1 C e2) e (Pair e' e2)
|
|
|
|
| PlugPair2 : forall e e' v1 C,
|
|
|
|
value v1
|
|
|
|
-> plug C e e'
|
|
|
|
-> plug (Pair2 v1 C) e (Pair v1 e')
|
|
|
|
| PlugFst1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Fst1 C) e (Fst e')
|
|
|
|
| PlugSnd1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Snd1 C) e (Snd e')
|
|
|
|
| PlugInl1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Inl1 C) e (Inl e')
|
|
|
|
| PlugInr1 : forall e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Inr1 C) e (Inr e')
|
|
|
|
| PluMatch1 : forall e e' C x1 e1 x2 e2,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2)
|
|
|
|
|
|
|
|
(* Our new plugging rules *)
|
|
|
|
| PluSetVar1 : forall x e e' C,
|
|
|
|
plug C e e'
|
|
|
|
-> plug (SetVar1 x C) e (SetVar x e').
|
|
|
|
|
|
|
|
Definition valuation := fmap var exp.
|
|
|
|
|
|
|
|
Inductive step0 : valuation * exp -> valuation * exp -> Prop :=
|
|
|
|
| Beta : forall env x e v,
|
|
|
|
value v
|
|
|
|
-> step0 (env, App (Abs x e) v) (env, subst v x e)
|
|
|
|
| Add : forall env n1 n2,
|
|
|
|
step0 (env, Plus (Const n1) (Const n2)) (env, Const (n1 + n2))
|
|
|
|
| FstPair : forall env v1 v2,
|
|
|
|
value v1
|
|
|
|
-> value v2
|
|
|
|
-> step0 (env, Fst (Pair v1 v2)) (env, v1)
|
|
|
|
| SndPair : forall env v1 v2,
|
|
|
|
value v1
|
|
|
|
-> value v2
|
|
|
|
-> step0 (env, Snd (Pair v1 v2)) (env, v2)
|
|
|
|
| MatchInl : forall env v x1 e1 x2 e2,
|
|
|
|
value v
|
|
|
|
-> step0 (env, Match (Inl v) x1 e1 x2 e2) (env, subst v x1 e1)
|
|
|
|
| MatchInr : forall env v x1 e1 x2 e2,
|
|
|
|
value v
|
|
|
|
-> step0 (env, Match (Inr v) x1 e1 x2 e2) (env, subst v x2 e2)
|
|
|
|
| Read : forall env x v,
|
|
|
|
env $? x = Some v
|
|
|
|
-> step0 (env, GetVar x) (env, v)
|
|
|
|
| Overwrite : forall env x v,
|
|
|
|
value v
|
|
|
|
-> step0 (env, SetVar x v) (env $+ (x, v), v).
|
|
|
|
|
|
|
|
Inductive step : valuation * exp -> valuation * exp -> Prop :=
|
|
|
|
| StepRule : forall C env1 e1 env2 e2 e1' e2',
|
|
|
|
plug C e1 e1'
|
|
|
|
-> plug C e2 e2'
|
|
|
|
-> step0 (env1, e1) (env2, e2)
|
|
|
|
-> step (env1, e1') (env2, e2').
|
|
|
|
|
|
|
|
Definition trsys_of (env : valuation) (e : exp) := {|
|
|
|
|
Initial := {(env, e)};
|
|
|
|
Step := step
|
|
|
|
|}.
|
|
|
|
|
|
|
|
|
|
|
|
Inductive type :=
|
|
|
|
| Nat
|
|
|
|
| Fun (dom ran : type)
|
|
|
|
| Prod (t1 t2 : type)
|
|
|
|
| Sum (t1 t2 : type).
|
|
|
|
|
|
|
|
(* Now there will be two typing contexts, one for mutable variables and one
|
|
|
|
* for immutable. *)
|
|
|
|
Inductive hasty (M : fmap var type) : fmap var type -> exp -> type -> Prop :=
|
|
|
|
| HtVar : forall G x t,
|
|
|
|
G $? x = Some t
|
|
|
|
-> hasty M G (Var x) t
|
|
|
|
| HtConst : forall G n,
|
|
|
|
hasty M G (Const n) Nat
|
|
|
|
| HtPlus : forall G e1 e2,
|
|
|
|
hasty M G e1 Nat
|
|
|
|
-> hasty M G e2 Nat
|
|
|
|
-> hasty M G (Plus e1 e2) Nat
|
|
|
|
| HtAbs : forall G x e1 t1 t2,
|
|
|
|
hasty M (G $+ (x, t1)) e1 t2
|
|
|
|
-> hasty M G (Abs x e1) (Fun t1 t2)
|
|
|
|
| HtApp : forall G e1 e2 t1 t2,
|
|
|
|
hasty M G e1 (Fun t1 t2)
|
|
|
|
-> hasty M G e2 t1
|
|
|
|
-> hasty M G (App e1 e2) t2
|
|
|
|
| HtPair : forall G e1 e2 t1 t2,
|
|
|
|
hasty M G e1 t1
|
|
|
|
-> hasty M G e2 t2
|
|
|
|
-> hasty M G (Pair e1 e2) (Prod t1 t2)
|
|
|
|
| HtFst : forall G e1 t1 t2,
|
|
|
|
hasty M G e1 (Prod t1 t2)
|
|
|
|
-> hasty M G (Fst e1) t1
|
|
|
|
| HtSnd : forall G e1 t1 t2,
|
|
|
|
hasty M G e1 (Prod t1 t2)
|
|
|
|
-> hasty M G (Snd e1) t2
|
|
|
|
| HtInl : forall G e1 t1 t2,
|
|
|
|
hasty M G e1 t1
|
|
|
|
-> hasty M G (Inl e1) (Sum t1 t2)
|
|
|
|
| HtInr : forall G e1 t1 t2,
|
|
|
|
hasty M G e1 t2
|
|
|
|
-> hasty M G (Inr e1) (Sum t1 t2)
|
|
|
|
| HtMatch : forall G e t1 t2 x1 e1 x2 e2 t,
|
|
|
|
hasty M G e (Sum t1 t2)
|
|
|
|
-> hasty M (G $+ (x1, t1)) e1 t
|
|
|
|
-> hasty M (G $+ (x2, t2)) e2 t
|
|
|
|
-> hasty M G (Match e x1 e1 x2 e2) t
|
|
|
|
|
|
|
|
(* New cases: *)
|
|
|
|
| HtGetVar : forall G x t,
|
|
|
|
M $? x = Some t
|
|
|
|
-> hasty M G (GetVar x) t
|
|
|
|
| HtSetVar : forall G x e t,
|
|
|
|
M $? x = Some t
|
|
|
|
-> hasty M G e t
|
|
|
|
-> hasty M G (SetVar x e) t.
|
|
|
|
|
|
|
|
Local Hint Constructors value plug step0 step hasty : core.
|
|
|
|
|
|
|
|
(* Let's characterize what makes a typing context and a variable valuation
|
|
|
|
* compatible. *)
|
|
|
|
Definition compatible (M : fmap var type) (env : valuation) :=
|
|
|
|
forall x t, M $? x = Some t
|
|
|
|
-> exists v, env $? x = Some v
|
|
|
|
/\ hasty M $0 v t.
|
|
|
|
|
|
|
|
Ltac t0 := match goal with
|
|
|
|
| [ H : ex _ |- _ ] => invert H
|
|
|
|
| [ H : _ /\ _ |- _ ] => invert H
|
|
|
|
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
|
|
|
|
| [ H : Some _ = Some _ |- _ ] => invert H
|
|
|
|
|
|
|
|
| [ H : step _ _ |- _ ] => invert H
|
|
|
|
| [ H : step0 _ _ |- _ ] => invert1 H
|
|
|
|
(* Add a few extra underscores below, for new [hasty] argument. *)
|
|
|
|
| [ H : hasty _ _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; []
|
|
|
|
| [ H : hasty _ _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; [|]
|
|
|
|
|
|
|
|
| [ H : hasty _ _ _ _ |- _ ] => invert1 H
|
|
|
|
| [ H : plug _ _ _ |- _ ] => invert1 H
|
|
|
|
|
|
|
|
(* New cases: *)
|
|
|
|
| [ H1 : compatible ?M ?env, H2 : ?M $? ?x = Some _ |- _ ] =>
|
|
|
|
(assert (exists v, env $? x = Some v) by eauto; fail 1)
|
|
|
|
|| (pose proof (H1 _ _ H2); first_order)
|
|
|
|
| [ H1 : forall env, compatible ?M env -> _, H2 : compatible ?M _ |- _ ] =>
|
|
|
|
specialize (H1 _ H2); first_order
|
|
|
|
end; subst.
|
|
|
|
|
|
|
|
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 7.
|
|
|
|
|
|
|
|
Lemma progress : forall M e t,
|
|
|
|
hasty M $0 e t
|
|
|
|
-> forall env, compatible M env
|
|
|
|
-> value e
|
|
|
|
\/ exists st', step (env, e) st'.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
|
|
|
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
|
|
|
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
|
|
|
-> G' $+ (x, t) $? x' = Some t').
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
cases (x ==v x'); simplify; eauto.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve weakening_override : core.
|
|
|
|
|
|
|
|
Lemma weakening : forall M G e t, hasty M G e t
|
|
|
|
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
|
|
|
-> hasty M G' e t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve weakening : core.
|
|
|
|
|
|
|
|
Lemma hasty_change : forall M G e t,
|
|
|
|
hasty M G e t
|
|
|
|
-> forall G', G' = G
|
|
|
|
-> hasty M G' e t.
|
|
|
|
Proof.
|
|
|
|
t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve hasty_change : core.
|
|
|
|
|
|
|
|
Lemma substitution : forall M G x t' e t e',
|
|
|
|
hasty M (G $+ (x, t')) e t
|
|
|
|
-> hasty M $0 e' t'
|
|
|
|
-> hasty M G (subst e' x e) t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve substitution : core.
|
|
|
|
|
|
|
|
Lemma compatible_bind : forall M env x v t,
|
|
|
|
compatible M env
|
|
|
|
-> M $? x = Some t
|
|
|
|
-> hasty M $0 v t
|
|
|
|
-> compatible M (env $+ (x, v)).
|
|
|
|
Proof.
|
|
|
|
unfold compatible; first_order.
|
|
|
|
cases (x ==v x0); subst; simplify.
|
|
|
|
rewrite H0 in H2.
|
|
|
|
invert H2.
|
|
|
|
eauto.
|
|
|
|
apply H in H0; first_order.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve compatible_bind : core.
|
|
|
|
|
|
|
|
Lemma compatible_hasty : forall M env x v t,
|
|
|
|
compatible M env
|
|
|
|
-> env $? x = Some v
|
|
|
|
-> M $? x = Some t
|
|
|
|
-> hasty M $0 v t.
|
|
|
|
Proof.
|
|
|
|
t.
|
|
|
|
specialize (H _ _ H1); first_order.
|
|
|
|
rewrite H0 in H.
|
|
|
|
invert H.
|
|
|
|
assumption.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Immediate compatible_hasty : core.
|
|
|
|
|
|
|
|
Lemma preservation0_exp : forall M env1 e1 env2 e2,
|
|
|
|
step0 (env1, e1) (env2, e2)
|
|
|
|
-> forall t, hasty M $0 e1 t
|
|
|
|
-> compatible M env1
|
|
|
|
-> hasty M $0 e2 t.
|
|
|
|
Proof.
|
|
|
|
invert 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma preservation0_env : forall M env1 e1 env2 e2,
|
|
|
|
step0 (env1, e1) (env2, e2)
|
|
|
|
-> forall t, hasty M $0 e1 t
|
|
|
|
-> compatible M env1
|
|
|
|
-> compatible M env2.
|
|
|
|
Proof.
|
|
|
|
invert 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve preservation0_exp preservation0_env : core.
|
|
|
|
|
|
|
|
Lemma preservation'_exp : forall M C e1 e1',
|
|
|
|
plug C e1 e1'
|
|
|
|
-> forall e2 e2' t env1 env2, plug C e2 e2'
|
|
|
|
-> step0 (env1, e1) (env2, e2)
|
|
|
|
-> hasty M $0 e1' t
|
|
|
|
-> compatible M env1
|
|
|
|
-> hasty M $0 e2' t.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve preservation'_exp : core.
|
|
|
|
|
|
|
|
Lemma preservation'_env' : forall M C e1 e1',
|
|
|
|
plug C e1 e1'
|
|
|
|
-> forall t e2 env1 env2, step0 (env1, e1) (env2, e2)
|
|
|
|
-> hasty M $0 e1' t
|
|
|
|
-> compatible M env1
|
|
|
|
-> compatible M env2.
|
|
|
|
Proof.
|
|
|
|
induct 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Lemma preservation'_env : forall M C e1 e1' t e2 env1 env2,
|
|
|
|
step0 (env1, e1) (env2, e2)
|
|
|
|
-> plug C e1 e1'
|
|
|
|
-> hasty M $0 e1' t
|
|
|
|
-> compatible M env1
|
|
|
|
-> compatible M env2.
|
|
|
|
Proof.
|
|
|
|
simplify; eapply preservation'_env' with (e2 := e2); eauto.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Immediate preservation'_env : core.
|
|
|
|
|
|
|
|
Lemma preservation : forall M env1 e1 env2 e2,
|
|
|
|
step (env1, e1) (env2, e2)
|
|
|
|
-> forall t, hasty M $0 e1 t
|
|
|
|
-> compatible M env1
|
|
|
|
-> hasty M $0 e2 t /\ compatible M env2.
|
|
|
|
Proof.
|
|
|
|
invert 1; t.
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
Local Hint Resolve progress preservation : core.
|
|
|
|
|
|
|
|
Theorem safety : forall M env e t, hasty M $0 e t
|
|
|
|
-> compatible M env
|
|
|
|
-> invariantFor (trsys_of env e)
|
|
|
|
(fun st => value (snd st)
|
|
|
|
\/ exists st', step st st').
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
apply invariant_weaken with (invariant1 := fun st => hasty M $0 (snd st) t /\ compatible M (fst st)); eauto.
|
|
|
|
apply invariant_induction; simplify.
|
|
|
|
propositional; subst; auto.
|
|
|
|
invert H1.
|
|
|
|
cases s; cases s'; simplify.
|
|
|
|
eauto.
|
|
|
|
propositional.
|
|
|
|
cases s; simplify.
|
|
|
|
eauto.
|
|
|
|
Qed.
|
|
|
|
End StlcMutable.
|