frap/ModelChecking.v

797 lines
20 KiB
Coq
Raw Normal View History

(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 5: Model Checking
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap TransitionSystems.
Set Implicit Arguments.
Definition oneStepClosure_current {state} (sys : trsys state)
(invariant1 invariant2 : state -> Prop) :=
forall st, invariant1 st
-> invariant2 st.
Definition oneStepClosure_new {state} (sys : trsys state)
(invariant1 invariant2 : state -> Prop) :=
forall st st', invariant1 st
-> sys.(Step) st st'
-> invariant2 st'.
Definition oneStepClosure {state} (sys : trsys state)
(invariant1 invariant2 : state -> Prop) :=
oneStepClosure_current sys invariant1 invariant2
/\ oneStepClosure_new sys invariant1 invariant2.
Theorem prove_oneStepClosure : forall state (sys : trsys state) (inv1 inv2 : state -> Prop),
(forall st, inv1 st -> inv2 st)
-> (forall st st', inv1 st -> sys.(Step) st st' -> inv2 st')
-> oneStepClosure sys inv1 inv2.
Proof.
unfold oneStepClosure.
propositional.
Qed.
Theorem oneStepClosure_done : forall state (sys : trsys state) (invariant : state -> Prop),
(forall st, sys.(Initial) st -> invariant st)
-> oneStepClosure sys invariant invariant
-> invariantFor sys invariant.
Proof.
unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new.
propositional.
apply invariant_induction.
assumption.
simplify.
eapply H2.
eassumption.
assumption.
Qed.
Inductive multiStepClosure {state} (sys : trsys state)
: (state -> Prop) -> (state -> Prop) -> Prop :=
| MscDone : forall inv,
oneStepClosure sys inv inv
-> multiStepClosure sys inv inv
| MscStep : forall inv inv' inv'',
oneStepClosure sys inv inv'
-> multiStepClosure sys inv' inv''
-> multiStepClosure sys inv inv''.
Lemma multiStepClosure_ok' : forall state (sys : trsys state) (inv inv' : state -> Prop),
multiStepClosure sys inv inv'
-> (forall st, sys.(Initial) st -> inv st)
-> invariantFor sys inv'.
Proof.
induct 1; simplify.
apply oneStepClosure_done.
assumption.
assumption.
apply IHmultiStepClosure.
simplify.
unfold oneStepClosure, oneStepClosure_current in *. (* <-- *)
propositional.
apply H3.
apply H1.
assumption.
Qed.
Theorem multiStepClosure_ok : forall state (sys : trsys state) (inv : state -> Prop),
multiStepClosure sys sys.(Initial) inv
-> invariantFor sys inv.
Proof.
simplify.
eapply multiStepClosure_ok'.
eassumption.
propositional.
Qed.
Theorem oneStepClosure_empty : forall state (sys : trsys state),
oneStepClosure sys (constant nil) (constant nil).
Proof.
unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional.
Qed.
Theorem oneStepClosure_split : forall state (sys : trsys state) st sts (inv1 inv2 : state -> Prop),
(forall st', sys.(Step) st st' -> inv1 st')
-> oneStepClosure sys (constant sts) inv2
-> oneStepClosure sys (constant (st :: sts)) ({st} \cup inv1 \cup inv2).
Proof.
unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional.
invert H0.
left.
left.
simplify.
propositional.
right.
apply H1.
assumption.
simplify.
propositional.
left.
right.
apply H.
equality.
right.
eapply H2.
eassumption.
assumption.
Qed.
Definition fact_correct (original_input : nat) (st : fact_state) : Prop :=
match st with
| AnswerIs ans => fact original_input = ans
| WithAccumulator _ _ => True
end.
Theorem fact_init_is : forall original_input,
fact_init original_input = {WithAccumulator original_input 1}.
Proof.
simplify.
apply sets_equal; simplify.
propositional.
invert H.
equality.
rewrite <- H0.
constructor.
Qed.
2016-02-15 00:23:26 +00:00
Theorem singleton_in : forall {A} (x : A) rest,
({x} \cup rest) x.
Proof.
2016-02-15 00:23:26 +00:00
simplify.
left.
simplify.
equality.
Qed.
2016-02-15 00:23:26 +00:00
Theorem singleton_in_other : forall {A} (x : A) (s1 s2 : set A),
s2 x
-> (s1 \cup s2) x.
Proof.
simplify.
right.
assumption.
Qed.
Theorem factorial_ok_2 :
invariantFor (factorial_sys 2) (fact_correct 2).
Proof.
simplify.
eapply invariant_weaken.
apply multiStepClosure_ok.
simplify.
rewrite fact_init_is.
eapply MscStep.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_empty.
simplify.
eapply MscStep.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_empty.
simplify.
eapply MscStep.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_empty.
simplify.
apply MscDone.
apply prove_oneStepClosure; simplify.
propositional.
propositional; invert H0; try equality.
invert H; equality.
invert H1; equality.
simplify.
propositional; subst; simplify; propositional.
(* ^-- *)
Qed.
2016-02-14 22:33:46 +00:00
Hint Rewrite fact_init_is.
Ltac model_check_done :=
apply MscDone; apply prove_oneStepClosure; simplify; propositional; subst;
repeat match goal with
| [ H : _ |- _ ] => invert H
end; simplify; equality.
2016-02-15 00:23:26 +00:00
Ltac singletoner :=
repeat match goal with
| _ => apply singleton_in
| [ |- (_ \cup _) _ ] => apply singleton_in_other
end.
2016-02-14 22:33:46 +00:00
Ltac model_check_step :=
eapply MscStep; [
repeat ((apply oneStepClosure_empty; simplify)
|| (apply oneStepClosure_split; [ simplify;
repeat match goal with
| [ H : _ |- _ ] => invert H; try congruence
2016-02-15 00:23:26 +00:00
end; solve [ singletoner ] | ]))
2016-02-14 22:33:46 +00:00
| simplify ].
Ltac model_check_steps1 := model_check_done || model_check_step.
Ltac model_check_steps := repeat model_check_steps1.
Ltac model_check_finish := simplify; propositional; subst; simplify; equality.
Ltac model_check_infer :=
apply multiStepClosure_ok; simplify; model_check_steps.
2016-02-14 22:33:46 +00:00
Ltac model_check_find_invariant :=
simplify; eapply invariant_weaken; [ model_check_infer | ].
2016-02-14 22:33:46 +00:00
Ltac model_check := model_check_find_invariant; model_check_finish.
Theorem factorial_ok_2_snazzy :
invariantFor (factorial_sys 2) (fact_correct 2).
Proof.
model_check.
Qed.
Theorem factorial_ok_3 :
invariantFor (factorial_sys 3) (fact_correct 3).
Proof.
model_check.
Qed.
2016-02-15 00:23:26 +00:00
Theorem factorial_ok_5 :
invariantFor (factorial_sys 5) (fact_correct 5).
2016-02-14 22:33:46 +00:00
Proof.
model_check.
Qed.
2016-02-14 22:55:59 +00:00
(** * Abstraction *)
(*
int global = 0;
thread() {
int local;
while (true) {
local = global;
global = local + 2;
}
}
*)
Inductive isEven : nat -> Prop :=
| EvenO : isEven 0
| EvenSS : forall n, isEven n -> isEven (S (S n)).
Inductive add2_thread :=
| Read
| Write (local : nat).
Inductive add2_init : threaded_state nat add2_thread -> Prop :=
| Add2Init : add2_init {| Shared := 0; Private := Read |}.
Inductive add2_step : threaded_state nat add2_thread -> threaded_state nat add2_thread -> Prop :=
| StepRead : forall global,
add2_step {| Shared := global; Private := Read |}
{| Shared := global; Private := Write global |}
| StepWrite : forall global local,
add2_step {| Shared := global; Private := Write local |}
{| Shared := S (S local); Private := Read |}.
Definition add2_sys1 := {|
Initial := add2_init;
Step := add2_step
|}.
Definition add2_sys := parallel add2_sys1 add2_sys1.
Inductive simulates state1 state2 (R : state1 -> state2 -> Prop)
(sys1 : trsys state1) (sys2 : trsys state2) : Prop :=
| Simulates :
(forall st1, sys1.(Initial) st1
-> exists st2, R st1 st2
/\ sys2.(Initial) st2)
-> (forall st1 st2, R st1 st2
-> forall st1', sys1.(Step) st1 st1'
-> exists st2', R st1' st2'
/\ sys2.(Step) st2 st2')
-> simulates R sys1 sys2.
Inductive invariantViaSimulation state1 state2 (R : state1 -> state2 -> Prop)
(inv2 : state2 -> Prop)
: state1 -> Prop :=
| InvariantViaSimulation : forall st1 st2, R st1 st2
-> inv2 st2
-> invariantViaSimulation R inv2 st1.
Lemma invariant_simulates' : forall state1 state2 (R : state1 -> state2 -> Prop)
(sys1 : trsys state1) (sys2 : trsys state2),
(forall st1 st2, R st1 st2
-> forall st1', sys1.(Step) st1 st1'
-> exists st2', R st1' st2'
/\ sys2.(Step) st2 st2')
-> forall st1 st1', sys1.(Step)^* st1 st1'
-> forall st2, R st1 st2
-> exists st2', R st1' st2'
/\ sys2.(Step)^* st2 st2'.
2016-02-14 22:55:59 +00:00
Proof.
induct 2.
2016-02-14 22:55:59 +00:00
simplify.
exists st2.
propositional.
constructor.
2016-02-14 22:55:59 +00:00
simplify.
eapply H in H2.
first_order.
apply IHtrc in H2.
first_order.
exists x1.
2016-02-14 22:55:59 +00:00
propositional.
econstructor.
2016-02-14 22:55:59 +00:00
eassumption.
assumption.
assumption.
2016-02-14 22:55:59 +00:00
Qed.
Theorem invariant_simulates : forall state1 state2 (R : state1 -> state2 -> Prop)
(sys1 : trsys state1) (sys2 : trsys state2) (inv2 : state2 -> Prop),
simulates R sys1 sys2
-> invariantFor sys2 inv2
-> invariantFor sys1 (invariantViaSimulation R inv2).
2016-02-14 22:55:59 +00:00
Proof.
simplify.
invert H.
unfold invariantFor; simplify.
apply H1 in H.
first_order.
apply invariant_simulates' with (sys2 := sys2) (R := R) (st2 := x) in H3; try assumption.
first_order.
unfold invariantFor in H0.
apply H0 with (s' := x0) in H4; try assumption.
econstructor.
eassumption.
assumption.
2016-02-14 22:55:59 +00:00
Qed.
2016-02-15 00:23:26 +00:00
(* Abstracted program:
bool global = true;
thread() {
bool local;
while (true) {
local = global;
global = local;
}
}
*)
Inductive add2_bthread :=
| BRead
| BWrite (local : bool).
Inductive add2_binit : threaded_state bool add2_bthread -> Prop :=
| Add2BInit : add2_binit {| Shared := true; Private := BRead |}.
Inductive add2_bstep : threaded_state bool add2_bthread -> threaded_state bool add2_bthread -> Prop :=
| StepBRead : forall global,
add2_bstep {| Shared := global; Private := BRead |}
{| Shared := global; Private := BWrite global |}
| StepBWrite : forall global local,
add2_bstep {| Shared := global; Private := BWrite local |}
{| Shared := local; Private := BRead |}.
Definition add2_bsys1 := {|
Initial := add2_binit;
Step := add2_bstep
|}.
Definition add2_bsys := parallel add2_bsys1 add2_bsys1.
Definition add2_correct (st : threaded_state nat (add2_thread * add2_thread)) :=
isEven st.(Shared).
Inductive R_private1 : add2_thread -> add2_bthread -> Prop :=
| RpRead : R_private1 Read BRead
| RpWrite : forall n b, (b = true <-> isEven n)
-> R_private1 (Write n) (BWrite b).
Inductive add2_R : threaded_state nat (add2_thread * add2_thread)
-> threaded_state bool (add2_bthread * add2_bthread)
-> Prop :=
| Add2_R : forall n b th1 th2 th1' th2',
(b = true <-> isEven n)
-> R_private1 th1 th1'
-> R_private1 th2 th2'
-> add2_R {| Shared := n; Private := (th1, th2) |}
{| Shared := b; Private := (th1', th2') |}.
Theorem add2_init_is :
parallel1 add2_binit add2_binit = { {| Shared := true; Private := (BRead, BRead) |} }.
2016-02-15 00:23:26 +00:00
Proof.
simplify.
apply sets_equal; simplify.
propositional.
invert H.
invert H2.
invert H4.
equality.
invert H0.
2016-02-15 00:23:26 +00:00
constructor.
constructor.
constructor.
Qed.
Hint Rewrite add2_init_is.
2016-02-15 00:23:26 +00:00
Theorem add2_ok :
invariantFor add2_sys add2_correct.
2016-02-15 00:23:26 +00:00
Proof.
eapply invariant_weaken with (invariant1 := invariantViaSimulation add2_R _).
apply invariant_simulates with (sys2 := add2_bsys).
2016-02-15 00:23:26 +00:00
constructor; simplify.
2016-02-15 00:23:26 +00:00
invert H.
invert H0.
invert H1.
exists {| Shared := true; Private := (BRead, BRead) |}; simplify.
propositional.
constructor.
2016-02-15 00:23:26 +00:00
propositional.
constructor.
constructor.
constructor.
2016-02-15 00:23:26 +00:00
invert H.
invert H0; simplify.
invert H7.
2016-02-15 00:23:26 +00:00
invert H2.
exists {| Shared := b; Private := (BWrite b, th2') |}.
propositional.
constructor.
propositional.
constructor.
propositional.
assumption.
constructor.
constructor.
2016-02-15 00:23:26 +00:00
invert H2.
exists {| Shared := b0; Private := (BRead, th2') |}.
propositional.
2016-02-15 00:23:26 +00:00
constructor.
propositional.
2016-02-15 00:23:26 +00:00
constructor.
assumption.
invert H0.
propositional.
constructor.
assumption.
2016-02-15 00:23:26 +00:00
constructor.
constructor.
invert H7.
2016-02-15 00:23:26 +00:00
invert H3.
exists {| Shared := b; Private := (th1', BWrite b) |}.
propositional.
constructor.
propositional.
assumption.
constructor.
propositional.
constructor.
constructor.
invert H3.
exists {| Shared := b0; Private := (th1', BRead) |}.
propositional.
constructor.
propositional.
constructor.
assumption.
invert H0.
propositional.
assumption.
constructor.
constructor.
constructor.
model_check_infer.
invert 1.
invert H0.
simplify.
unfold add2_correct.
simplify.
propositional; subst.
invert H.
propositional.
invert H1.
propositional.
invert H.
propositional.
invert H1.
propositional.
2016-02-15 00:23:26 +00:00
Qed.
(** * Another abstraction example *)
(*
f(int n) {
int i, j;
i = 0;
j = 0;
while (n > 0) {
i = i + n;
j = j + n;
n = n - 1;
}
}
*)
Inductive pc :=
| i_gets_0
| j_gets_0
| Loop
| i_add_n
| j_add_n
| n_sub_1
| Done.
Record vars := {
N : nat;
I : nat;
J : nat
}.
Record state := {
Pc : pc;
Vars : vars
}.
Inductive initial : state -> Prop :=
| Init : forall vs, initial {| Pc := i_gets_0; Vars := vs |}.
Inductive step : state -> state -> Prop :=
| Step_i_gets_0 : forall n i j,
step {| Pc := i_gets_0; Vars := {| N := n;
I := i;
J := j |} |}
{| Pc := j_gets_0; Vars := {| N := n;
I := 0;
J := j |} |}
| Step_j_gets_0 : forall n i j,
step {| Pc := j_gets_0; Vars := {| N := n;
I := i;
J := j |} |}
{| Pc := Loop; Vars := {| N := n;
I := i;
J := 0 |} |}
| Step_Loop_done : forall i j,
step {| Pc := Loop; Vars := {| N := 0;
I := i;
J := j |} |}
{| Pc := Done; Vars := {| N := 0;
I := i;
J := j |} |}
| Step_Loop_enter : forall n i j,
step {| Pc := Loop; Vars := {| N := S n;
I := i;
J := j |} |}
{| Pc := i_add_n; Vars := {| N := S n;
I := i;
J := j |} |}
| Step_i_add_n : forall n i j,
step {| Pc := i_add_n; Vars := {| N := n;
I := i;
J := j |} |}
{| Pc := j_add_n; Vars := {| N := n;
I := i + n;
J := j |} |}
| Step_j_add_n : forall n i j,
step {| Pc := j_add_n; Vars := {| N := n;
I := i;
J := j |} |}
{| Pc := n_sub_1; Vars := {| N := n;
I := i;
J := j + n |} |}
| Step_n_sub_1 : forall n i j,
step {| Pc := n_sub_1; Vars := {| N := n;
I := i;
J := j |} |}
{| Pc := Loop; Vars := {| N := n - 1;
I := i;
J := j |} |}.
Definition loopy_sys := {|
Initial := initial;
Step := step
|}.
Inductive absvars := Unknown | i_is_0 | i_eq_j | i_eq_j_plus_n.
Record absstate := {
APc : pc;
AVars : absvars
}.
Inductive absstep : absstate -> absstate -> Prop :=
| AStep_i_gets_0 : forall vs,
absstep {| APc := i_gets_0; AVars := vs |}
{| APc := j_gets_0; AVars := i_is_0 |}
| AStep_j_gets_0_i_is_0 :
absstep {| APc := j_gets_0; AVars := i_is_0 |}
{| APc := Loop; AVars := i_eq_j |}
| AStep_j_gets_0_Other : forall vs,
vs <> i_is_0
-> absstep {| APc := j_gets_0; AVars := vs |}
{| APc := Loop; AVars := Unknown |}
| AStep_Loop_done : forall vs,
absstep {| APc := Loop; AVars := vs |}
{| APc := Done; AVars := vs |}
| AStep_Loop_enter : forall vs,
absstep {| APc := Loop; AVars := vs |}
{| APc := i_add_n; AVars := vs |}
| AStep_i_add_n_i_eq_j :
absstep {| APc := i_add_n; AVars := i_eq_j |}
{| APc := j_add_n; AVars := i_eq_j_plus_n |}
| AStep_i_add_n_Other : forall vs,
vs <> i_eq_j
-> absstep {| APc := i_add_n; AVars := vs |}
{| APc := j_add_n; AVars := Unknown |}
| AStep_j_add_n_i_eq_j_plus_n :
absstep {| APc := j_add_n; AVars := i_eq_j_plus_n |}
{| APc := n_sub_1; AVars := i_eq_j |}
| AStep_j_add_n_i_Other : forall vs,
vs <> i_eq_j_plus_n
-> absstep {| APc := j_add_n; AVars := vs |}
{| APc := n_sub_1; AVars := Unknown |}
| AStep_n_sub_1_bad :
absstep {| APc := n_sub_1; AVars := i_eq_j_plus_n |}
{| APc := Loop; AVars := Unknown |}
| AStep_n_sub_1_good : forall vs,
vs <> i_eq_j_plus_n
-> absstep {| APc := n_sub_1; AVars := vs |}
{| APc := Loop; AVars := vs |}.
Definition absloopy_sys := {|
Initial := { {| APc := i_gets_0; AVars := Unknown |} };
Step := absstep
|}.
Inductive Rvars : vars -> absvars -> Prop :=
| Rv_Unknown : forall vs, Rvars vs Unknown
| Rv_i_is_0 : forall vs, vs.(I) = 0 -> Rvars vs i_is_0
| Rv_i_eq_j : forall vs, vs.(I) = vs.(J) -> Rvars vs i_eq_j
| Rv_i_eq_j_plus_n : forall vs, vs.(I) = vs.(J) + vs.(N) -> Rvars vs i_eq_j_plus_n.
Inductive R : state -> absstate -> Prop :=
| Rcon : forall pc vs avs, Rvars vs avs -> R {| Pc := pc; Vars := vs |}
{| APc := pc; AVars := avs |}.
Definition loopy_correct (st : state) :=
st.(Pc) = Done -> st.(Vars).(I) = st.(Vars).(J).
Theorem loopy_ok :
invariantFor loopy_sys loopy_correct.
Proof.
eapply invariant_weaken with (invariant1 := invariantViaSimulation R _).
apply invariant_simulates with (sys2 := absloopy_sys).
constructor; simplify.
invert H.
exists {| APc := i_gets_0; AVars := Unknown |}.
propositional.
constructor.
constructor.
invert H0.
invert H.
exists {| APc := j_gets_0; AVars := i_is_0 |}.
propositional; repeat constructor.
invert H.
invert H3.
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
exists {| APc := Loop; AVars := i_eq_j |}; propositional; repeat constructor; equality.
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
exists {| APc := Done; AVars := st2.(AVars) |}.
invert H; simplify; propositional; repeat constructor; equality.
exists {| APc := i_add_n; AVars := st2.(AVars) |}.
invert H; simplify; propositional; repeat constructor; equality.
invert H.
invert H3.
exists {| APc := j_add_n; AVars := Unknown |}; repeat constructor; equality.
exists {| APc := j_add_n; AVars := Unknown |}; repeat constructor; equality.
exists {| APc := j_add_n; AVars := i_eq_j_plus_n |}; repeat constructor; simplify; equality.
exists {| APc := j_add_n; AVars := Unknown |}; repeat constructor; equality.
invert H.
invert H3.
exists {| APc := n_sub_1; AVars := Unknown |}; repeat constructor; equality.
exists {| APc := n_sub_1; AVars := Unknown |}; repeat constructor; equality.
exists {| APc := n_sub_1; AVars := Unknown |}; repeat constructor; equality.
exists {| APc := n_sub_1; AVars := i_eq_j |}; repeat constructor; simplify; equality.
invert H.
invert H3.
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
exists {| APc := Loop; AVars := i_is_0 |}; propositional; repeat constructor; equality.
exists {| APc := Loop; AVars := i_eq_j |}; propositional; repeat constructor; equality.
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
model_check_infer.
invert 1.
invert H0.
unfold loopy_correct.
simplify.
propositional; subst.
invert H2.
invert H1.
invert H2.
invert H1.
invert H.
assumption.
invert H2.
invert H1.
invert H2.
Qed.