Spectral/homotopy/spherical_fibrations.hlean

161 lines
5.1 KiB
Text
Raw Permalink Normal View History

import homotopy.join homotopy.smash types.nat.hott
open eq equiv trunc function bool join sphere sphere.ops prod
open pointed sigma smash is_trunc nat
namespace spherical_fibrations
/- classifying type of spherical fibrations -/
definition BG (n : ) [is_succ n] : Type₁ :=
Σ(X : Type₀), ∥ X ≃ S (pred n) ∥
definition pointed_BG [instance] [constructor] (n : ) [is_succ n] : pointed (BG n) :=
pointed.mk ⟨ S (pred n) , tr erfl ⟩
definition pBG [constructor] (n : ) [is_succ n] : Type* := pointed.mk' (BG n)
definition G (n : ) [is_succ n] : Type₁ :=
pt = pt :> BG n
definition G_char (n : ) [is_succ n] : G n ≃ (S (pred n) ≃ S (pred n)) :=
2016-09-15 22:05:58 +00:00
calc
G n ≃ Σ(p : pType.carrier (S (pred n)) = pType.carrier (S (pred n))), _ : sigma_eq_equiv
... ≃ (pType.carrier (S (pred n)) = pType.carrier (S (pred n))) : sigma_equiv_of_is_contr_right _ _
... ≃ (S (pred n) ≃ S (pred n)) : eq_equiv_equiv
definition mirror (n : ) [is_succ n] : S (pred n) → G n :=
begin
intro v, apply to_inv (G_char n),
exact sorry
end
/-
Can we give a fibration P : S n → Type, P base = F n = Ω(BF n) = (S. n ≃* S. n)
and total space sigma P ≃ G (n+1) = Ω(BG (n+1)) = (S n.+1 ≃ S .n+1)
Yes, let eval : BG (n+1) → S n be the evaluation map
-/
definition is_succ_1 [instance] : is_succ 1 := is_succ.mk 0
definition S_of_BG (n : ) : Ω(pBG (n+1)) → S n :=
λ f, f..1 ▸ pt
definition BG_succ (n : ) [H : is_succ n] : BG n → BG (n+1) :=
begin
induction H with n,
intro X, cases X with X p,
refine sigma.mk (susp X) _, induction p with f, apply tr,
exact susp.equiv f
end
/- classifying type of pointed spherical fibrations -/
definition BF (n : ) : Type₁ :=
Σ(X : Type*), ∥ X ≃* S n ∥
definition pointed_BF [instance] [constructor] (n : ) : pointed (BF n) :=
pointed.mk ⟨ S n , tr pequiv.rfl ⟩
definition pBF [constructor] (n : ) : Type* := pointed.mk' (BF n)
definition BF_succ (n : ) : BF n → BF (n+1) :=
begin
intro X, cases X with X p,
apply sigma.mk (susp X), induction p with f, apply tr,
apply susp.susp_pequiv f
end
definition BF_of_BG {n : } [H : is_succ n] : BG n → BF n :=
begin
induction H with n,
intro X, cases X with X p,
apply sigma.mk (pointed.MK (susp X) susp.north),
induction p with f, apply tr,
apply pequiv_of_equiv (susp.equiv f),
reflexivity
end
definition BG_of_BF {n : } : BF n → BG (n + 1) :=
begin
intro X, cases X with X hX,
apply sigma.mk (carrier X), induction hX with fX,
apply tr, exact fX
end
definition BG_mul {n m : } [Hn : is_succ n] [Hm : is_succ m] (X : BG n) (Y : BG m) :
BG (n + m) :=
begin
induction Hn with n, induction Hm with m,
cases X with X pX, cases Y with Y pY,
apply sigma.mk (join X Y),
induction pX with fX, induction pY with fY,
apply tr, rewrite [succ_add],
exact join_equiv_join fX fY ⬝e join_sphere n m
end
definition BF_mul {n m : } (X : BF n) (Y : BF m) : BF (n + m) :=
begin
cases X with X hX, cases Y with Y hY,
apply sigma.mk (smash X Y),
induction hX with fX, induction hY with fY, apply tr,
exact sorry -- needs smash.spheres : psmash (S. n) (S. m) ≃ S. (n + m)
end
definition BF_of_BG_mul (n m : ) [is_succ n] [is_succ m] (X : BG n) (Y : BG m)
: BF_of_BG (BG_mul X Y) = BF_mul (BF_of_BG X) (BF_of_BG Y) :=
sorry
-- Thom spaces
namespace thom
variables {X : Type} {n : } (α : X → BF n)
-- the canonical section of an F-object
protected definition sec (x : X) : carrier (sigma.pr1 (α x)) :=
Point _
open pushout sigma
definition thom_space : Type :=
pushout (λx : X, ⟨x , thom.sec α x⟩) (const X unit.star)
end thom
/-
Things to do:
- Orientability and orientations
* Thom class u ∈ ~Hⁿ(Tξ)
* eventually prove Thom-Isomorphism (Rudyak IV.5.7)
- define BG∞ and BF∞ as colimits of BG n and BF n
- Ω(BF n) = ΩⁿSⁿ₁ + ΩⁿSⁿ₋₁ (self-maps of degree ±1)
- succ_BF n is (n - 2) connected (from Freudenthal)
- pfiber (BG_of_BF n) ≃* S. n
- π₁(BF n)=π₁(BG n)=/2
- double covers BSG and BSF
- O : BF n → BG 1 = Σ(A : Type), ∥ A = bool ∥
- BSG n = sigma O
- π₁(BSG n)=π₁(BSF n)=O
- BSO(n),
- find BF' n : Type₀ with BF' n ≃ BF n etc.
- canonical bundle γₙ : P(n) → P∞=BO(1) → Type₀
prove T(γₙ) = P(n+1)
- BG∞ = BF∞ (in fact = BGL₁(S), the group of units of the sphere spectrum)
- clutching construction:
any f : S n → SG(n) gives S n.+1 → BSG(n) (mut.mut. for O(n),SO(n),etc.)
- all bundles on S 3 are trivial, incl. tangent bundle
- Adams' result on vector fields on spheres:
there are maximally ρ(n)-1 indep.sections of the tangent bundle of S (n-1)
2016-09-15 22:05:58 +00:00
where ρ(n) is the n'th Radon-Hurwitz number.→
-/
-- tangent bundle on S 2:
namespace two_sphere
definition tau : S 2 → BG 2 :=
begin
intro v, induction v with x, do 2 exact pt,
exact sorry
end
end two_sphere
end spherical_fibrations