Spectral/homotopy/susp.hlean

198 lines
8.6 KiB
Text
Raw Normal View History

import .pushout types.pointed2 ..move_to_lib
2017-03-23 00:02:53 +00:00
open susp eq pointed function is_equiv lift equiv is_trunc nat
2017-03-23 00:02:53 +00:00
namespace susp
variables {X X' Y Y' Z : Type*}
definition susp_functor_of_fn [constructor] (f : X → Y) : susp X →* susp Y :=
pmap.mk (susp_functor' f) idp
definition susp_pequiv_of_equiv [constructor] (f : X ≃ Y) : susp X ≃* susp Y :=
pequiv_of_equiv (susp.equiv f) idp
definition iterate_susp_iterate_susp_rev (n m : ) (A : Type*) :
iterate_susp n (iterate_susp m A) ≃* iterate_susp (m + n) A :=
2017-03-28 16:07:18 +00:00
begin
induction n with n e,
{ reflexivity },
{ exact susp_pequiv e }
2017-03-28 16:07:18 +00:00
end
definition iterate_susp_pequiv [constructor] (n : ) {X Y : Type*} (f : X ≃* Y) :
iterate_susp n X ≃* iterate_susp n Y :=
2017-03-28 16:07:18 +00:00
begin
induction n with n e,
{ exact f },
{ exact susp_pequiv e }
2017-03-28 16:07:18 +00:00
end
open algebra nat
definition iterate_susp_iterate_susp (n m : ) (A : Type*) :
iterate_susp n (iterate_susp m A) ≃* iterate_susp (n + m) A :=
iterate_susp_iterate_susp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_susp k A) (add.comm m n))
2017-03-28 16:07:18 +00:00
definition plift_susp.{u v} : Π(A : Type*), plift.{u v} (susp A) ≃* susp (plift.{u v} A) :=
2017-06-06 17:54:42 +00:00
begin
intro A,
calc
plift.{u v} (susp A) ≃* susp A : by exact (pequiv_plift (susp A))⁻¹ᵉ*
... ≃* susp (plift.{u v} A) : by exact susp_pequiv (pequiv_plift.{u v} A)
2017-06-06 17:54:42 +00:00
end
definition is_contr_susp [instance] (A : Type) [H : is_contr A] : is_contr (susp A) :=
begin
apply is_contr.mk north,
intro x, induction x,
reflexivity,
exact merid !center,
apply eq_pathover_constant_left_id_right, apply square_of_eq,
exact whisker_left idp (ap merid !eq_of_is_contr)
end
definition loop_susp_pintro_phomotopy {X Y : Type*} {f g : ⅀ X →* Y} (p : f ~* g) :
loop_susp_pintro X Y f ~* loop_susp_pintro X Y g :=
pwhisker_right (loop_susp_unit X) (Ω⇒ p)
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
definition susp_functor_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (⅀→ f₁₀) (⅀→ f₁₂) (⅀→ f₀₁) (⅀→ f₂₁) :=
!susp_functor_pcompose⁻¹* ⬝* susp_functor_phomotopy p ⬝* !susp_functor_pcompose
definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
(f₀₁ : susp A₀₀ →* A₀₂) (f₂₁ : susp A₂₀ →* A₂₂) : psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁ →
psquare f₁₀ (Ω→ f₁₂) (loop_susp_pintro A₀₀ A₀₂ f₀₁) (loop_susp_pintro A₂₀ A₂₂ f₂₁) :=
begin
intro p,
refine pvconcat _ (ap1_psquare p),
exact (loop_susp_unit_natural f₁₀)⁻¹*
end
definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
(f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁ →
psquare (⅀→ f₁₀) f₁₂ (susp_pelim A₀₀ A₀₂ f₀₁) (susp_pelim A₂₀ A₂₂ f₂₁) :=
begin
intro p,
refine susp_functor_psquare p ⬝v* _,
2018-09-11 15:06:46 +00:00
exact ptranspose (loop_susp_counit_natural f₁₂)
end
open pushout unit prod sigma sigma.ops
section
parameters {A : Type*} {n : } [HA : is_conn n A]
-- we end up not using this, because to prove that the
-- composition with the first projection is loop_susp_counit A
-- is hideous without HIT computations on path constructors
parameter (A)
definition pullback_diagonal_prod_of_wedge : susp (Ω A)
≃ Σ (a : A) (w : wedge A A), prod_of_wedge w = (a, a) :=
begin
refine equiv.trans _
(comm_equiv_unc (λ z, prod_of_wedge (prod.pr1 z) = (prod.pr2 z, prod.pr2 z))),
apply equiv.symm,
apply equiv.trans (sigma_equiv_sigma_right
(λ w, sigma_equiv_sigma_right
(λ a, prod_eq_equiv (prod_of_wedge w) (a, a)))),
apply equiv.trans !pushout.flattening', esimp,
fapply pushout.equiv
(λ z, ⟨pt, z.2⟩) (λ z, ⟨pt, glue z.1 ▸ z.2⟩) (λ p, star) (λ p, star),
{ apply equiv.trans !sigma_unit_left, fapply equiv.MK,
{ intro z, induction z with a w, induction w with p q, exact p ⬝ q⁻¹ },
{ intro p, exact ⟨pt, (p, idp)⟩ },
{ intro p, reflexivity },
{ intro z, induction z with a w, induction w with p q, induction q,
reflexivity } },
{ fapply equiv.MK,
{ intro z, exact star },
{ intro u, exact ⟨pt, ⟨pt, (idp, idp)⟩ ⟩ },
{ intro u, induction u, reflexivity },
{ intro z, induction z with a w, induction w with b z,
induction z with p q, induction p, esimp at q, induction q,
reflexivity } },
{ fapply equiv.MK,
{ intro z, exact star },
{ intro u, exact ⟨pt, ⟨pt, (idp, idp)⟩ ⟩ },
{ intro u, induction u, reflexivity },
{ intro z, induction z with a w, induction w with b z,
induction z with p q, induction q, esimp at p, induction p,
reflexivity } },
{ intro z, induction z with u w, induction u, induction w with a z,
induction z with p q, reflexivity },
{ intro z, induction z with u w, induction u, induction w with a z,
induction z with p q, reflexivity }
end
parameter {A}
-- instead we directly compare the fibers, using flattening twice
definition fiber_loop_susp_counit_equiv (a : A)
: fiber (loop_susp_counit A) a ≃ fiber prod_of_wedge (a, a) :=
begin
apply equiv.trans !fiber.sigma_char, apply equiv.trans !pushout.flattening',
apply equiv.symm, apply equiv.trans !fiber.sigma_char,
apply equiv.trans (sigma_equiv_sigma_right
(λ w, prod_eq_equiv (prod_of_wedge w) (a, a))), esimp,
apply equiv.trans !pushout.flattening',
esimp,
fapply pushout.equiv (λ z, ⟨pt, z.2⟩) (λ z, ⟨pt, glue z.1 ▸ z.2⟩)
(λ z, ⟨star, z.2⟩) (λ z, ⟨star, glue z.1 ▸ z.2⟩),
{ fapply equiv.MK,
{ intro w, induction w with u z, induction z with p q,
exact ⟨q ⬝ p⁻¹, q⟩ },
{ intro z, induction z with p q, apply dpair star,
exact (p⁻¹ ⬝ q, q) },
{ intro z, induction z with p q, esimp, induction q, esimp,
rewrite [idp_con,inv_inv] },
{ intro w, induction w with u z, induction u, induction z with p q,
esimp, induction q, rewrite [idp_con,inv_inv] } },
{ fapply equiv.MK,
{ intro w, induction w with b z, induction z with p q, exact ⟨star, q⟩ },
{ intro z, induction z with u p, induction u, esimp at p, esimp,
apply dpair a, esimp, exact (idp, p) },
{ intro z, induction z with u p, induction u, reflexivity },
{ intro w, induction w with b z, induction z with p q, esimp,
induction p, reflexivity } },
{ fapply equiv.MK,
{ intro w, induction w with b z, induction z with p q, exact ⟨star, p⟩ },
{ intro z, induction z with u p, induction u, esimp at p, esimp,
apply dpair a, esimp, exact (p, idp) },
{ intro z, induction z with u p, induction u, reflexivity },
{ intro w, induction w with b z, induction z with p q, esimp,
induction q, reflexivity } },
{ intro w, induction w with u z, induction u, induction z with p q,
reflexivity },
{ intro w, induction w with u z, induction u, induction z with p q,
esimp, induction q, esimp, krewrite prod_transport, fapply sigma_eq,
{ exact idp },
{ esimp, rewrite eq_transport_Fl, rewrite eq_transport_Fl,
2018-09-07 14:30:39 +00:00
krewrite elim_glue, krewrite [-ap_compose' pr1 prod_of_wedge (glue star)],
krewrite elim_glue, esimp, apply eq_pathover, rewrite idp_con, esimp,
apply square_of_eq, rewrite [idp_con,idp_con,inv_inv] } }
end
include HA
2018-01-27 18:42:09 +00:00
open is_conn trunc_index
parameter (A)
-- connectivity of loop_susp_counit
definition is_conn_fun_loop_susp_counit {k : } (H : k ≤ 2 * n)
: is_conn_fun k (loop_susp_counit A) :=
2018-01-27 18:42:09 +00:00
begin
intro a, apply is_conn.is_conn_equiv_closed_rev k (fiber_loop_susp_counit_equiv a),
fapply @is_conn.is_conn_of_le (fiber prod_of_wedge (a, a)) k (2 * n)
(of_nat_le_of_nat H),
assert H : of_nat (2 * n) = of_nat n + of_nat n,
{ rewrite (of_nat_add_of_nat n n), apply ap of_nat,
apply trans (nat.mul_comm 2 n),
apply ap (λ k, k + n), exact nat.zero_add n },
rewrite H,
2018-01-30 21:11:13 +00:00
exact is_conn_fun_prod_of_wedge n n A A (a, a)
2018-01-27 18:42:09 +00:00
end
end
2017-03-23 00:02:53 +00:00
end susp