Spectral/algebra/ses.hlean

266 lines
9.5 KiB
Text
Raw Normal View History

2017-02-17 04:00:55 +00:00
/-
Copyright (c) 2017 Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Egbert Rijke
2017-03-30 19:02:14 +00:00
Basic facts about short exact sequences.
2017-03-02 22:11:06 +00:00
At the moment, it only covers short exact sequences of abelian groups, but this should be extended to short exact sequences in any abelian category.
2017-02-17 04:00:55 +00:00
-/
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc
equiv is_equiv
structure SES (A B C : AbGroup) :=
( f : A →g B)
( g : B →g C)
( Hf : is_embedding f)
( Hg : is_surjective g)
2017-03-30 19:02:14 +00:00
( ex : is_exact_ag f g)
2017-02-17 04:00:55 +00:00
2017-03-30 19:02:14 +00:00
definition SES_of_inclusion {A B : AbGroup} (f : A →g B) (Hf : is_embedding f) : SES A B (quotient_ab_group (image_subgroup f)) :=
2017-02-17 04:00:55 +00:00
begin
have Hg : is_surjective (ab_qg_map (image_subgroup f)),
from is_surjective_ab_qg_map (image_subgroup f),
fapply SES.mk,
exact f,
exact ab_qg_map (image_subgroup f),
exact Hf,
exact Hg,
fapply is_exact.mk,
intro a,
fapply qg_map_eq_one, fapply tr, fapply fiber.mk, exact a, reflexivity,
intro b, intro p,
2017-03-30 19:02:14 +00:00
exact rel_of_ab_qg_map_eq_one _ p
2017-02-17 04:00:55 +00:00
end
2017-03-02 22:11:06 +00:00
definition SES_of_subgroup {B : AbGroup} (S : subgroup_rel B) : SES (ab_subgroup S) B (quotient_ab_group S) :=
begin
fapply SES.mk,
exact incl_of_subgroup S,
exact ab_qg_map S,
exact is_embedding_incl_of_subgroup S,
exact is_surjective_ab_qg_map S,
fapply is_exact.mk,
intro a, fapply ab_qg_map_eq_one, induction a with b p, exact p,
intro b p, fapply tr, fapply fiber.mk, fapply sigma.mk b, fapply rel_of_ab_qg_map_eq_one, exact p, reflexivity,
end
2017-02-17 04:00:55 +00:00
definition SES_of_surjective_map {B C : AbGroup} (g : B →g C) (Hg : is_surjective g) : SES (ab_kernel g) B C :=
begin
fapply SES.mk,
exact ab_kernel_incl g,
exact g,
exact is_embedding_ab_kernel_incl g,
exact Hg,
fapply is_exact.mk,
intro a, induction a with a p, exact p,
intro b p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact b, exact p, reflexivity,
end
2017-03-09 21:16:43 +00:00
definition SES_of_homomorphism {A B : AbGroup} (f : A →g B) : SES (ab_kernel f) A (ab_image f) :=
begin
fapply SES.mk,
exact ab_kernel_incl f,
exact image_lift f,
exact is_embedding_ab_kernel_incl f,
exact is_surjective_image_lift f,
fapply is_exact.mk,
intro a, induction a with a p, fapply subtype_eq, exact p,
2017-03-30 19:02:14 +00:00
intro a p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact a,
2017-03-09 21:16:43 +00:00
exact calc
f a = image_incl f (image_lift f a) : by exact homotopy_of_eq (ap group_fun (image_factor f)) a
... = image_incl f 1 : ap (image_incl f) p
... = 1 : by exact respect_one (image_incl f),
reflexivity
end
definition SES_of_isomorphism_right {B C : AbGroup} (g : B ≃g C) : SES trivial_ab_group B C :=
begin
fapply SES.mk,
exact from_trivial_ab_group B,
exact g,
exact is_embedding_from_trivial_ab_group B,
fapply is_surjective_of_is_equiv,
fapply is_exact.mk,
intro a, induction a, fapply respect_one,
2017-03-30 19:02:14 +00:00
intro b p,
2017-03-09 21:16:43 +00:00
have q : g b = g 1,
2017-03-30 19:02:14 +00:00
from p ⬝ (respect_one g)⁻¹,
note r := eq_of_fn_eq_fn (equiv_of_isomorphism g) q,
2017-03-09 21:16:43 +00:00
fapply tr, fapply fiber.mk, exact unit.star, rewrite r,
end
2017-02-17 04:00:55 +00:00
structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') :=
( hA : A →g A')
( hB : B →g B')
( hC : C →g C')
( htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA)
( htpy2 : hC ∘g (SES.g ses) ~ (SES.g ses') ∘g hB)
2017-03-02 22:11:06 +00:00
section ses
parameters {A B C : AbGroup} (ses : SES A B C)
local abbreviation f := SES.f ses
local notation `g` := SES.g ses
local abbreviation ex := SES.ex ses
local abbreviation q := ab_qg_map (kernel_subgroup g)
local abbreviation B_mod_A := quotient_ab_group (kernel_subgroup g)
2017-04-07 17:14:51 +00:00
definition SES_of_triangle_left {A' : AbGroup} (α : A' ≃g A) (f' : A' →g B) (H : Π a' : A', f (α a') = f' a') : SES A' B C :=
begin
fapply SES.mk,
exact f',
exact g,
fapply is_embedding_of_is_injective,
intro x y p,
fapply eq_of_fn_eq_fn (equiv_of_isomorphism α),
fapply @is_injective_of_is_embedding _ _ f (SES.Hf ses) (α x) (α y),
rewrite [H x], rewrite [H y], exact p,
exact SES.Hg ses,
fapply is_exact.mk,
intro a',
rewrite [(H a')⁻¹],
fapply is_exact.im_in_ker (SES.ex ses),
intro b p,
have t : trunctype.carrier (subgroup_to_rel (image_subgroup f) b), from is_exact.ker_in_im (SES.ex ses) b p,
induction t, fapply tr, induction a with a q, fapply fiber.mk, exact α⁻¹ᵍ a, rewrite [(H (α⁻¹ᵍ a))⁻¹],
krewrite [right_inv (equiv_of_isomorphism α) a], assumption
end
2017-02-17 04:00:55 +00:00
2017-03-30 19:02:14 +00:00
--definition quotient_SES {A B C : AbGroup} (ses : SES A B C) :
2017-02-17 04:00:55 +00:00
-- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C :=
-- begin
2017-03-30 19:02:14 +00:00
-- fapply ab_group_first_iso_thm B C (SES.g ses),
2017-02-17 04:00:55 +00:00
-- end
-- definition pre_right_extend_SES (to separate the following definition and replace C with B/A)
2017-03-02 22:11:06 +00:00
definition quotient_codomain_SES : B_mod_A ≃g C :=
2017-02-17 04:00:55 +00:00
begin
2017-03-02 22:11:06 +00:00
exact (codomain_surjection_is_quotient g (SES.Hg ses))
2017-02-17 04:00:55 +00:00
end
2017-03-02 22:11:06 +00:00
local abbreviation α := quotient_codomain_SES
definition quotient_triangle_SES : α ∘g q ~ g :=
2017-02-17 04:00:55 +00:00
begin
reflexivity
end
2017-03-02 22:11:06 +00:00
definition quotient_triangle_extend_SES {C': AbGroup} (k : B →g C') :
(Σ (h : C →g C'), h ∘g g ~ k) ≃ (Σ (h' : B_mod_A →g C'), h' ∘g q ~ k) :=
begin
fapply equiv.mk,
2017-03-30 19:02:14 +00:00
intro pair, induction pair with h H,
2017-03-02 22:11:06 +00:00
fapply sigma.mk, exact h ∘g α, intro b,
exact H b,
fapply adjointify,
intro pair, induction pair with h' H', fapply sigma.mk,
exact h' ∘g α⁻¹ᵍ,
intro b,
exact calc
h' (α⁻¹ᵍ (g b)) = h' (α⁻¹ᵍ (α (q b))) : by reflexivity
... = h' (q b) : by exact hwhisker_left h' (left_inv α) (q b)
... = k b : by exact H' b,
intro pair, induction pair with h' H', fapply sigma_eq, esimp, fapply homomorphism_eq, fapply hwhisker_left h' (left_inv α), esimp, fapply is_prop.elimo, fapply pi.is_trunc_pi, intro a, fapply is_trunc_eq,
intro pair, induction pair with h H, fapply sigma_eq, esimp, fapply homomorphism_eq, fapply hwhisker_left h (right_inv α),
esimp, fapply is_prop.elimo, fapply pi.is_trunc_pi, intro a, fapply is_trunc_eq,
end
2017-03-30 19:02:14 +00:00
parameters {A' B' C' : AbGroup}
(ses' : SES A' B' C')
2017-03-02 22:11:06 +00:00
(hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g f ~ (SES.f ses') ∘g hA)
2017-02-17 04:00:55 +00:00
local abbreviation f' := SES.f ses'
2017-03-02 22:11:06 +00:00
local notation `g'` := SES.g ses'
2017-02-17 04:00:55 +00:00
local abbreviation ex' := SES.ex ses'
local abbreviation q' := ab_qg_map (kernel_subgroup g')
2017-03-02 22:11:06 +00:00
local abbreviation α' := quotient_codomain_SES
2017-03-30 19:02:14 +00:00
2017-02-17 04:00:55 +00:00
include htpy1
2017-03-30 19:02:14 +00:00
definition quotient_extend_unique_SES : is_contr (Σ (hC : C →g C'), hC ∘g g ~ g' ∘g hB) :=
2017-03-02 22:11:06 +00:00
begin
2017-03-30 19:02:14 +00:00
fapply @(is_trunc_equiv_closed_rev _ (quotient_triangle_extend_SES (g' ∘g hB))),
2017-03-02 22:11:06 +00:00
fapply ab_qg_universal_property,
intro b, intro K,
have k : trunctype.carrier (image_subgroup f b), from is_exact.ker_in_im ex b K,
induction k, induction a with a p,
induction p,
refine (ap g' (htpy1 a)) ⬝ _,
fapply is_exact.im_in_ker ex' (hA a)
end
/-
2017-02-17 04:00:55 +00:00
-- We define a group homomorphism B/ker(g) →g B'/ker(g'), keeping in mind that ker(g)=A and ker(g')=A'.
definition quotient_extend_SES : quotient_ab_group (kernel_subgroup g) →g quotient_ab_group (kernel_subgroup g') :=
begin
fapply ab_group_quotient_homomorphism B B' (kernel_subgroup g) (kernel_subgroup g') hB,
intro b,
intro K,
have k : trunctype.carrier (image_subgroup f b), from is_exact.ker_in_im ex b K,
induction k, induction a with a p,
rewrite [p⁻¹],
rewrite [htpy1 a],
fapply is_exact.im_in_ker ex' (hA a)
end
local abbreviation k := quotient_extend_SES
definition quotient_extend_SES_square : k ∘g (ab_qg_map (kernel_subgroup g)) ~ (ab_qg_map (kernel_subgroup g')) ∘g hB :=
begin
fapply quotient_group_compute
end
2017-03-30 19:02:14 +00:00
definition right_extend_SES : C →g C' :=
2017-02-17 04:00:55 +00:00
α' ∘g k ∘g α⁻¹ᵍ
local abbreviation hC := right_extend_SES
2017-03-02 22:11:06 +00:00
definition right_extend_SES_square : hC ∘g g ~ g' ∘ hB :=
2017-02-17 04:00:55 +00:00
begin
exact calc
hC ∘g g ~ hC ∘g α ∘g q : by reflexivity
... ~ α' ∘g k ∘g α⁻¹ᵍ ∘g α ∘g q : by reflexivity
... ~ α' ∘g k ∘g q : by exact hwhisker_left (α' ∘g k) (hwhisker_right q (left_inv α))
... ~ α' ∘g q' ∘g hB : by exact hwhisker_left α' (quotient_extend_SES_square)
... ~ g' ∘g hB : by reflexivity
end
2017-03-02 22:11:06 +00:00
local abbreviation htpy2 := right_extend_SES_square
definition right_extend_SES_unique_map_aux (hC' : C →g C') (htpy2' : g' ∘g hB ~ hC' ∘g g) : k ∘g q ~ α'⁻¹ᵍ ∘g hC' ∘g α ∘g q :=
begin
exact calc
k ∘g q ~ q' ∘g hB : by reflexivity
... ~ α'⁻¹ᵍ ∘g α' ∘g q' ∘g hB : by exact hwhisker_right (q' ∘g hB) (homotopy.symm (left_inv α'))
... ~ α'⁻¹ᵍ ∘g g' ∘g hB : by reflexivity
... ~ α'⁻¹ᵍ ∘g hC' ∘g g : by exact hwhisker_left (α'⁻¹ᵍ) htpy2'
... ~ α'⁻¹ᵍ ∘g hC' ∘g α ∘g q : by reflexivity
end
definition right_extend_SES_unique_map (hC' : C →g C') (htpy2' : hC' ∘g g ~ g' ∘g hB) : hC ~ hC' :=
begin
exact calc
hC ~ α' ∘g k ∘g α⁻¹ᵍ : by reflexivity
2017-03-30 19:02:14 +00:00
... ~ α' ∘g α'⁻¹ᵍ ∘g hC' ∘g α ∘g α⁻¹ᵍ :
2017-03-02 22:11:06 +00:00
... ~ hC' ∘g α ∘g α⁻¹ᵍ : _
... ~ hC' : _
end
definition right_extend_hom_SES : hom_SES ses ses' :=
begin
fapply hom_SES.mk,
exact hA,
exact hB,
exact hC,
exact htpy1,
exact htpy2
end
-/
end ses