Spectral/homotopy/smash.hlean

606 lines
24 KiB
Text
Raw Normal View History

-- Authors: Floris van Doorn
import homotopy.smash ..move_to_lib .pushout homotopy.red_susp
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc
function red_susp unit
/- To prove: Σ(X × Y) ≃ ΣX ΣY Σ(X ∧ Y) (?) (notation means suspension, wedge, smash) -/
/- To prove: Σ(X ∧ Y) ≃ X ★ Y (?) (notation means suspension, smash, join) -/
/- To prove: associative, A ∧ S¹ ≃ ΣA -/
2016-11-03 19:34:06 +00:00
variables {A B C D E F : Type*}
namespace smash
section
open pushout
definition smash_functor' [unfold 7] (f : A →* C) (g : B →* D) : A ∧ B → C ∧ D :=
begin
fapply pushout.functor,
{ exact sum_functor f g },
{ exact prod_functor f g },
{ exact id },
{ intro v, induction v with a b,
exact prod_eq idp (respect_pt g),
exact prod_eq (respect_pt f) idp },
{ intro v, induction v with a b: reflexivity }
end
definition smash_functor [constructor] (f : A →* C) (g : B →* D) : A ∧ B →* C ∧ D :=
begin
fapply pmap.mk,
{ exact smash_functor' f g },
{ exact ap inl (prod_eq (respect_pt f) (respect_pt g)) },
end
definition functor_gluel (f : A →* C) (g : B →* D) (a : A) :
ap (smash_functor f g) (gluel a) = ap (smash.mk (f a)) (respect_pt g) ⬝ gluel (f a) :=
begin
refine !pushout.elim_glue ⬝ _, esimp, apply whisker_right,
induction D with D d₀, induction g with g g₀, esimp at *, induction g₀, reflexivity
end
definition functor_gluer (f : A →* C) (g : B →* D) (b : B) :
ap (smash_functor f g) (gluer b) = ap (λc, smash.mk c (g b)) (respect_pt f) ⬝ gluer (g b) :=
begin
refine !pushout.elim_glue ⬝ _, esimp, apply whisker_right,
induction C with C c₀, induction f with f f₀, esimp at *, induction f₀, reflexivity
end
definition functor_gluel' (f : A →* C) (g : B →* D) (a a' : A) :
ap (smash_functor f g) (gluel' a a') = ap (smash.mk (f a)) (respect_pt g) ⬝
gluel' (f a) (f a') ⬝ (ap (smash.mk (f a')) (respect_pt g))⁻¹ :=
begin
refine !ap_con ⬝ !functor_gluel ◾ (!ap_inv ⬝ !functor_gluel⁻²) ⬝ _,
refine whisker_left _ !con_inv ⬝ _,
refine !con.assoc⁻¹ ⬝ _, apply whisker_right,
apply con.assoc
end
definition functor_gluer' (f : A →* C) (g : B →* D) (b b' : B) :
ap (smash_functor f g) (gluer' b b') = ap (λc, smash.mk c (g b)) (respect_pt f) ⬝
gluer' (g b) (g b') ⬝ (ap (λc, smash.mk c (g b')) (respect_pt f))⁻¹ :=
begin
refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _,
refine !functor_gluer ◾ !functor_gluer⁻² ⬝ _,
refine whisker_left _ !con_inv ⬝ _,
refine !con.assoc⁻¹ ⬝ _, apply whisker_right,
apply con.assoc
end
/- the statements of the above rules becomes easier if one of the functions respects the basepoint
by reflexivity -/
definition functor_gluel'2 {D : Type} (f : A →* C) (g : B → D) (a a' : A) :
ap (smash_functor f (pmap_of_map g pt)) (gluel' a a') = gluel' (f a) (f a') :=
begin
refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _,
refine (!functor_gluel ⬝ !idp_con) ◾ (!functor_gluel ⬝ !idp_con)⁻²
end
definition functor_gluer'2 {C : Type} (f : A → C) (g : B →* D) (b b' : B) :
ap (smash_functor (pmap_of_map f pt) g) (gluer' b b') = gluer' (g b) (g b') :=
begin
refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _,
refine (!functor_gluer ⬝ !idp_con) ◾ (!functor_gluer ⬝ !idp_con)⁻²
end
lemma functor_gluel'2_same {D : Type} (f : A →* C) (g : B → D) (a : A) :
functor_gluel'2 f (pmap_of_map g pt) a a =
ap02 (smash_functor f (pmap_of_map g pt)) (con.right_inv (gluel a)) ⬝
(con.right_inv (gluel (f a)))⁻¹ :=
begin
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
refine _ ⬝ whisker_right _ !con_idp⁻¹,
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
apply eq_con_inv_of_con_eq, symmetry,
apply con_right_inv_natural
end
lemma functor_gluer'2_same {C : Type} (f : A → C) (g : B →* D) (b : B) :
functor_gluer'2 (pmap_of_map f pt) g b b =
ap02 (smash_functor (pmap_of_map f pt) g) (con.right_inv (gluer b)) ⬝
(con.right_inv (gluer (g b)))⁻¹ :=
begin
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
refine _ ⬝ whisker_right _ !con_idp⁻¹,
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
apply eq_con_inv_of_con_eq, symmetry,
apply con_right_inv_natural
end
definition smash_functor_pcompose_homotopy (f' : C →* E) (f : A →* C) (g' : D →* F) (g : B →* D) :
smash_functor (f' ∘* f) (g' ∘* g) ~ smash_functor f' g' ∘* smash_functor f g :=
begin
intro x, induction x with a b a b,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine !functor_gluel ⬝ _ ⬝ (ap_compose (smash_functor f' g') _ _)⁻¹,
refine whisker_right _ !ap_con ⬝ !con.assoc ⬝ _ ⬝ ap02 _ !functor_gluel⁻¹,
refine (!ap_compose'⁻¹ ⬝ !ap_compose') ◾ proof !functor_gluel⁻¹ qed ⬝ !ap_con⁻¹, },
{ apply eq_pathover, apply hdeg_square,
refine !functor_gluer ⬝ _ ⬝ (ap_compose (smash_functor f' g') _ _)⁻¹,
refine whisker_right _ !ap_con ⬝ !con.assoc ⬝ _ ⬝ ap02 _ !functor_gluer⁻¹,
refine (!ap_compose'⁻¹ ⬝ !ap_compose') ◾ proof !functor_gluer⁻¹ qed ⬝ !ap_con⁻¹, }
end
definition smash_functor_pcompose [constructor] (f' : C →* E) (f : A →* C) (g' : D →* F) (g : B →* D) :
smash_functor (f' ∘* f) (g' ∘* g) ~* smash_functor f' g' ∘* smash_functor f g :=
begin
fapply phomotopy.mk,
{ exact smash_functor_pcompose_homotopy f' f g' g },
{ exact abstract begin induction C, induction D, induction E, induction F,
induction f with f f₀, induction f' with f' f'₀, induction g with g g₀, induction g' with g' g'₀,
esimp at *, induction f₀, induction f'₀, induction g₀, induction g'₀, reflexivity end end }
end
definition smash_functor_phomotopy [constructor] {f f' : A →* C} {g g' : B →* D}
(h₁ : f ~* f') (h₂ : g ~* g') : smash_functor f g ~* smash_functor f' g' :=
begin
induction h₁ using phomotopy_rec_on_idp,
induction h₂ using phomotopy_rec_on_idp,
reflexivity
-- fapply phomotopy.mk,
-- { intro x, induction x with a b a b,
-- { exact ap011 smash.mk (h₁ a) (h₂ b) },
-- { reflexivity },
-- { reflexivity },
-- { apply eq_pathover,
-- refine !functor_gluel ⬝ph _ ⬝hp !functor_gluel⁻¹, exact sorry },
-- { apply eq_pathover,
-- refine !functor_gluer ⬝ph _ ⬝hp !functor_gluer⁻¹, exact sorry }},
-- { esimp, }
end
definition smash_functor_phomotopy_refl [constructor] (f : A →* C) (g : B →* D) :
smash_functor_phomotopy (phomotopy.refl f) (phomotopy.refl g) = phomotopy.rfl :=
!phomotopy_rec_on_idp_refl ⬝ !phomotopy_rec_on_idp_refl
definition smash_functor_pid [constructor] (A B : Type*) : smash_functor (pid A) (pid B) ~* pid (A ∧ B) :=
begin
fapply phomotopy.mk,
{ intro x, induction x with a b a b,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square, exact !functor_gluel ⬝ !idp_con },
{ apply eq_pathover_id_right, apply hdeg_square, exact !functor_gluer ⬝ !idp_con }},
{ reflexivity }
end
definition smash_functor_pid_pcompose [constructor] (A : Type*) (g' : C →* D) (g : B →* C)
: smash_functor (pid A) (g' ∘* g) ~* smash_functor (pid A) g' ∘* smash_functor (pid A) g :=
smash_functor_phomotopy !pid_pcompose⁻¹* phomotopy.rfl ⬝* !smash_functor_pcompose
definition smash_functor_pcompose_pid [constructor] (B : Type*) (f' : C →* D) (f : A →* C)
: smash_functor (f' ∘* f) (pid B) ~* smash_functor f' (pid B) ∘* smash_functor f (pid B) :=
smash_functor_phomotopy phomotopy.rfl !pid_pcompose⁻¹* ⬝* !smash_functor_pcompose
definition smash_pequiv_smash [constructor] (f : A ≃* C) (g : B ≃* D) : A ∧ B ≃* C ∧ D :=
begin
fapply pequiv_of_pmap (smash_functor f g),
apply pushout.is_equiv_functor,
exact to_is_equiv (sum_equiv_sum f g)
end
end
definition smash_pequiv_smash_left [constructor] (B : Type*) (f : A ≃* C) : A ∧ B ≃* C ∧ B :=
smash_pequiv_smash f pequiv.rfl
definition smash_pequiv_smash_right [constructor] (A : Type*) (g : B ≃* D) : A ∧ B ≃* A ∧ D :=
smash_pequiv_smash pequiv.rfl g
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
definition elim_gluel' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a a' : A) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel' a a') = Pgl a ⬝ (Pgl a')⁻¹ :=
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !elim_gluel ◾ !elim_gluel⁻²
definition elim_gluer' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b b' : B) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer' b b') = Pgr b ⬝ (Pgr b')⁻¹ :=
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !elim_gluer ◾ !elim_gluer⁻²
definition elim_gluel'_same {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) :
elim_gluel' Pgl Pgr a a =
ap02 (smash.elim Pmk Pl Pr Pgl Pgr) (con.right_inv (gluel a)) ⬝ (con.right_inv (Pgl a))⁻¹ :=
begin
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
refine _ ⬝ whisker_right _ !con_idp⁻¹,
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
apply eq_con_inv_of_con_eq, symmetry,
apply con_right_inv_natural
end
definition elim_gluer'_same {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) :
elim_gluer' Pgl Pgr b b =
ap02 (smash.elim Pmk Pl Pr Pgl Pgr) (con.right_inv (gluer b)) ⬝ (con.right_inv (Pgr b))⁻¹ :=
begin
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
refine _ ⬝ whisker_right _ !con_idp⁻¹,
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
apply eq_con_inv_of_con_eq, symmetry,
apply con_right_inv_natural
end
definition elim'_gluel'_pt {P : Type} {Pmk : Πa b, P}
(Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt)
(a : A) (ql : Pgl pt = idp) (qr : Pgr pt = idp) :
ap (smash.elim' Pmk Pgl Pgr ql qr) (gluel' a pt) = Pgl a :=
!elim_gluel' ⬝ whisker_left _ ql⁻²
definition elim'_gluer'_pt {P : Type} {Pmk : Πa b, P}
(Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt)
(b : B) (ql : Pgl pt = idp) (qr : Pgr pt = idp) :
ap (smash.elim' Pmk Pgl Pgr ql qr) (gluer' b pt) = Pgr b :=
!elim_gluer' ⬝ whisker_left _ qr⁻²
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
2016-11-03 19:34:06 +00:00
begin
induction v with a b ,
{ exact (a, pt) },
{ exact (pt, b) },
{ reflexivity }
end
definition wedge_of_sum [unfold 3] (v : A + B) : pwedge A B :=
2016-11-03 19:34:06 +00:00
begin
induction v with a b,
{ exact pushout.inl a },
{ exact pushout.inr b }
2016-11-03 19:34:06 +00:00
end
definition prod_of_wedge_of_sum [unfold 3] (v : A + B) : prod_of_wedge (wedge_of_sum v) = prod_of_sum v :=
2016-11-03 19:34:06 +00:00
begin
induction v with a b,
{ reflexivity },
{ reflexivity }
2016-11-03 19:34:06 +00:00
end
end smash open smash
namespace pushout
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : pwedge A B) :
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
2016-11-14 23:04:41 +00:00
begin
induction v with a b,
{ exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, },
{ apply eq_pathover_constant_left,
refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp }
2016-11-14 23:04:41 +00:00
end
variables (A B)
definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) :
inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum :=
begin
induction b,
{ exact glue (sum.inl pt) },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) }
2016-11-14 23:04:41 +00:00
end
definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) :=
begin
apply is_contr.mk (pushout.inl pt),
intro x, induction x with v b w,
{ apply eq_inl_pushout_wedge_of_sum },
{ apply eq_inr_pushout_wedge_of_sum },
{ apply eq_pathover_constant_left_id_right,
induction w with a b,
{ apply whisker_rt, exact vrfl },
{ apply whisker_rt, exact vrfl }}
end
definition bool_of_sum_of_bool {A B : Type*} (b : bool) : bool_of_sum (sum_of_bool A B b) = b :=
by induction b: reflexivity
/- a different proof, using pushout lemmas, and the fact that the wedge is the pushout of
A + B <-- 2 --> 1 -/
definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit :=
begin
refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B ⬝e !pushout.symm)
_ _ ⬝e _,
exact erfl,
intro x, induction x,
reflexivity, reflexivity,
exact bool_of_sum_of_bool,
apply pushout_of_equiv_right
end
end pushout open pushout
namespace smash
variables (A B)
definition smash_punit_pequiv [constructor] : smash A punit ≃* punit :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact λx, ⋆ },
{ exact λx, pt },
{ intro x, induction x, reflexivity },
{ exact abstract begin intro x, induction x,
{ induction b, exact gluel' pt a },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_constant_left_id_right, apply square_of_eq_top,
exact whisker_right _ !idp_con⁻¹ },
{ apply eq_pathover_constant_left_id_right, induction b,
refine !con.right_inv ⬝pv _, exact square_of_eq idp } end end }},
{ reflexivity }
end
definition smash_equiv_cofiber : smash A B ≃ cofiber (@prod_of_wedge A B) :=
2016-11-14 23:04:41 +00:00
begin
unfold [smash, cofiber, smash'], symmetry,
fapply pushout_vcompose_equiv wedge_of_sum,
{ symmetry, apply equiv_unit_of_is_contr, apply is_contr_pushout_wedge_of_sum },
{ intro x, reflexivity },
{ apply prod_of_wedge_of_sum }
2016-11-14 23:04:41 +00:00
end
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
2016-11-14 23:04:41 +00:00
begin
fconstructor,
{ exact prod_of_wedge },
{ reflexivity }
end
2016-11-03 19:34:06 +00:00
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
2016-11-14 23:04:41 +00:00
begin
apply pequiv_of_equiv (smash_equiv_cofiber A B),
exact cofiber.glue pt
2016-11-14 23:04:41 +00:00
end
variables {A B}
/- commutativity -/
definition smash_flip [unfold 3] (x : smash A B) : smash B A :=
begin
induction x,
{ exact smash.mk b a },
{ exact auxr },
{ exact auxl },
{ exact gluer a },
{ exact gluel b }
end
definition smash_flip_smash_flip [unfold 3] (x : smash A B) : smash_flip (smash_flip x) = x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _,
apply hrfl },
{ apply eq_pathover_id_right,
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _,
apply hrfl }
end
variables (A B)
definition smash_comm [constructor] : smash A B ≃* smash B A :=
begin
fapply pequiv_of_equiv,
{ apply equiv.MK, do 2 exact smash_flip_smash_flip },
{ reflexivity }
end
variables {A B}
/- smash A S¹ = red_susp A -/
definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) :
circle.elim a p x = a :=
begin
induction x,
{ reflexivity },
{ apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r }
end
definition red_susp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : red_susp A :=
begin
induction x using smash.elim,
{ induction b, exact base, exact equator a },
{ exact base },
{ exact base },
{ reflexivity },
{ exact circle_elim_constant equator_pt b }
end
definition smash_pcircle_of_red_susp [unfold 2] (x : red_susp A) : smash A S¹* :=
begin
induction x,
{ exact pt },
{ exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt },
{ refine !con.right_inv ◾ _ ◾ !con.right_inv,
exact ap_is_constant gluer loop ⬝ !con.right_inv }
end
exit
definition smash_pcircle_of_red_susp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
smash_pcircle_of_red_susp (red_susp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
begin
induction x,
{ exact gluel' pt a },
{ exact abstract begin apply eq_pathover,
refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _,
refine ap02 _ (elim_loop pt (equator a)) ⬝ !elim_equator ⬝ph _,
-- make everything below this a lemma defined by path induction?
refine !con_idp⁻¹ ⬝pv _, refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb,
apply whisker_tl, apply hrfl end end }
end
definition concat2o [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A}
{p : a = a'} (s : q a =[p] q a') (t : r a =[p] r a') : q a ⬝ r a =[p] q a' ⬝ r a' :=
by induction p; exact idpo
definition apd_con_fn [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A}
(p : a = a') : apd (λa, q a ⬝ r a) p = concat2o (apd q p) (apd r p) :=
by induction p; reflexivity
-- definition apd_con_fn_constant [unfold 10] {A B : Type} {f : A → B} {b b' : B} {q : Πa, f a = b}
-- {r : b = b'} {a a' : A} (p : a = a') :
-- apd (λa, q a ⬝ r) p = concat2o (apd q p) (pathover_of_eq _ idp) :=
-- by induction p; reflexivity
theorem apd_constant' {A A' : Type} {B : A' → Type} {a₁ a₂ : A} {a' : A'} (b : B a')
(p : a₁ = a₂) : apd (λx, b) p = pathover_of_eq p idp :=
by induction p; reflexivity
definition smash_pcircle_pequiv_red [constructor] (A : Type*) : smash A S¹* ≃* red_susp A :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact red_susp_of_smash_pcircle },
{ exact smash_pcircle_of_red_susp },
{ exact abstract begin intro x, induction x,
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose red_susp_of_smash_pcircle _ _ ⬝ ap02 _ !elim_equator ⬝ _ ⬝ !ap_id⁻¹,
refine !ap_con ⬝ (!ap_con ⬝ !elim_gluel' ◾ !ap_compose'⁻¹) ◾ !elim_gluel' ⬝ _,
esimp, exact !idp_con ⬝ !elim_loop },
{ exact sorry } end end },
{ intro x, induction x,
{ exact smash_pcircle_of_red_susp_of_smash_pcircle_pt a b },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _,
unfold [red_susp_of_smash_pcircle],
refine ap02 _ !elim_gluel ⬝ph _,
esimp, apply whisker_rt, exact vrfl },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _,
unfold [red_susp_of_smash_pcircle],
-- not sure why so many implicit arguments are needed here...
refine ap02 _ (@smash.elim_gluer A S¹* _ (λa, circle.elim red_susp.base (equator a)) red_susp.base red_susp.base (λa, refl red_susp.base) (circle_elim_constant equator_pt) b) ⬝ph _,
apply square_of_eq, induction b,
{ exact whisker_right _ !con.right_inv },
{ apply eq_pathover_dep, refine !apd_con_fn ⬝pho _ ⬝hop !apd_con_fn⁻¹,
refine ap (λx, concat2o x _) !rec_loop ⬝pho _ ⬝hop (ap011 concat2o (apd_compose1 (λa b, ap smash_pcircle_of_red_susp b) (circle_elim_constant equator_pt) loop) !apd_constant')⁻¹,
exact sorry }
}}},
{ reflexivity }
end
/- smash A S¹ = susp A -/
open susp
definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A :=
begin
induction x using smash.elim,
{ induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ },
{ exact pt },
{ exact pt },
{ reflexivity },
{ induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square,
exact !elim_loop ⬝ !con.right_inv }
end
definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* :=
begin
induction x,
{ exact pt },
{ exact pt },
{ exact gluel' pt a ⬝ (ap (smash.mk a) loop ⬝ gluel' a pt) },
end
-- the definitions below compile, but take a long time to do so and have sorry's in them
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
begin
induction x,
{ exact gluel' pt a },
{ exact abstract begin apply eq_pathover,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _,
refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _,
-- make everything below this a lemma defined by path induction?
exact sorry,
-- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, refine !con.assoc⁻¹ ⬝ph _,
-- apply whisker_bl, apply whisker_lb,
-- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, apply hrfl
-- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl,
-- refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, apply hrfl
-- apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left,
-- symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv,
-- refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc,
-- refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹,
-- refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv,
-- refine !ap_mk_right ⬝ !con.right_inv
end end }
end
-- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
-- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
-- (gluer pt)
-- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
-- (gluer b) :=
-- begin
-- refine ap02 _ !elim_gluer ⬝ph _,
-- induction b,
-- { apply square_of_eq, exact whisker_right _ !con.right_inv },
-- { apply square_pathover', exact sorry }
-- end
exit
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact psusp_of_smash_pcircle },
{ exact smash_pcircle_of_psusp },
{ exact abstract begin intro x, induction x,
{ reflexivity },
{ exact merid pt },
{ apply eq_pathover_id_right,
refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _,
refine ap02 _ !elim_merid ⬝ph _,
rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'],
refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _,
rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _,
apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end },
{ intro x, induction x using smash.rec,
{ exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
unfold [psusp_of_smash_pcircle],
refine ap02 _ !elim_gluel ⬝ph _,
esimp, apply whisker_rt, exact vrfl },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
unfold [psusp_of_smash_pcircle],
refine ap02 _ !elim_gluer ⬝ph _,
induction b,
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
{ exact sorry}
}}},
{ reflexivity }
end
end smash