Spectral/algebra/free_commutative_group.hlean

234 lines
8.6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .free_group
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv trunc_index
group
namespace group
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
2017-06-07 15:30:09 +00:00
variables (X : Type) {Y : Type} [is_set X] [is_set Y] {l l' : list (X ⊎ X)}
/- Free Abelian Group of a set -/
namespace free_ab_group
inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
| rrefl : Πl, fcg_rel l l
| cancel1 : Πx, fcg_rel [inl x, inr x] []
| cancel2 : Πx, fcg_rel [inr x, inl x] []
| rflip : Πx y, fcg_rel [x, y] [y, x]
| resp_append : Π{l₁ l₂ l₃ l₄}, fcg_rel l₁ l₂ → fcg_rel l₃ l₄ →
fcg_rel (l₁ ++ l₃) (l₂ ++ l₄)
| rtrans : Π{l₁ l₂ l₃}, fcg_rel l₁ l₂ → fcg_rel l₂ l₃ →
fcg_rel l₁ l₃
open fcg_rel
local abbreviation R [reducible] := fcg_rel
attribute fcg_rel.rrefl [refl]
attribute fcg_rel.rtrans [trans]
definition fcg_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥)
local abbreviation FG := fcg_carrier
definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) :=
begin constructor, intro s, apply tr, unfold R end
local attribute is_reflexive_R [instance]
variable {X}
theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ repeat esimp [map], apply rflip},
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
{ exact rtrans IH₁ IH₂}
end
theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ repeat esimp [map], apply rflip},
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
{ exact rtrans IH₁ IH₂}
end
theorem rel_cons_concat (l s) : R X (s :: l) (concat s l) :=
begin
induction l with t l IH,
{ reflexivity},
{ rewrite [concat_cons], transitivity (t :: s :: l),
{ exact resp_append !rflip !rrefl},
{ exact resp_append (rrefl [t]) IH}}
end
definition fcg_one [constructor] : FG X := class_of []
definition fcg_inv [unfold 3] : FG X → FG X :=
quotient_unary_map (reverse ∘ map sum.flip)
(λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip))
definition fcg_mul [unfold 3 4] : FG X → FG X → FG X :=
quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s))))
section
local notation 1 := fcg_one
local postfix ⁻¹ := fcg_inv
local infix * := fcg_mul
theorem fcg_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
begin
refine set_quotient.rec_prop _ g₁,
refine set_quotient.rec_prop _ g₂,
refine set_quotient.rec_prop _ g₃,
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
exact ap class_of !append.assoc
end
theorem fcg_one_mul (g : FG X) : 1 * g = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !append_nil_left
end
theorem fcg_mul_one (g : FG X) : g * 1 = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !append_nil_right
end
theorem fcg_mul_left_inv (g : FG X) : g⁻¹ * g = 1 :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
apply eq_of_rel, apply tr,
induction g with s l IH,
{ reflexivity},
{ rewrite [▸*, map_cons, reverse_cons, concat_append],
refine rtrans _ IH,
apply resp_append, reflexivity,
change R X ([flip s, s] ++ l) ([] ++ l),
apply resp_append,
induction s, apply cancel2, apply cancel1,
reflexivity}
end
theorem fcg_mul_comm (g h : FG X) : g * h = h * g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
refine set_quotient.rec_prop _ h, clear h, intro h,
apply eq_of_rel, apply tr,
revert h, induction g with s l IH: intro h,
{ rewrite [append_nil_left, append_nil_right]},
{ rewrite [append_cons,-concat_append],
transitivity concat s (l ++ h), apply rel_cons_concat,
rewrite [-append_concat], apply IH}
end
end
end free_ab_group open free_ab_group
variables (X)
definition group_free_ab_group [constructor] : ab_group (fcg_carrier X) :=
ab_group.mk _ fcg_mul fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one
fcg_inv fcg_mul_left_inv fcg_mul_comm
definition free_ab_group [constructor] : AbGroup :=
AbGroup.mk _ (group_free_ab_group X)
/- The universal property of the free commutative group -/
variables {X A}
definition free_ab_group_inclusion [constructor] (x : X) : free_ab_group X :=
class_of [inl x]
theorem fgh_helper_respect_fcg_rel (f : X → A) (r : fcg_rel X l l')
: Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
{ reflexivity},
{ unfold [foldl], apply mul_inv_cancel_right},
{ unfold [foldl], apply inv_mul_cancel_right},
{ unfold [foldl, fgh_helper], apply mul.right_comm},
{ rewrite [+foldl_append, IH₁, IH₂]},
{ exact !IH₁ ⬝ !IH₂}
end
definition free_ab_group_elim [constructor] (f : X → A) : free_ab_group X →g A :=
begin
fapply homomorphism.mk,
{ intro g, refine set_quotient.elim _ _ g,
{ intro l, exact foldl (fgh_helper f) 1 l},
{ intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r,
exact fgh_helper_respect_fcg_rel f r 1}},
{ refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l',
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
end
definition fn_of_free_ab_group_elim [unfold_full] (φ : free_ab_group X →g A) : X → A :=
φ ∘ free_ab_group_inclusion
definition free_ab_group_elim_unique [constructor] (f : X → A) (k : free_ab_group X →g A)
(H : k ∘ free_ab_group_inclusion ~ f) : k ~ free_ab_group_elim f :=
begin
refine set_quotient.rec_prop _, intro l, esimp,
induction l with s l IH,
{ esimp [foldl], exact to_respect_one k},
{ rewrite [foldl_cons, fgh_helper_mul],
refine to_respect_mul k (class_of [s]) (class_of l) ⬝ _,
rewrite [IH], apply ap (λx, x * _), induction s: rewrite [▸*, one_mul, -H a],
apply to_respect_inv }
end
variables (X A)
definition free_ab_group_elim_equiv_fn [constructor] : (free_ab_group X →g A) ≃ (X → A) :=
begin
fapply equiv.MK,
{ exact fn_of_free_ab_group_elim},
{ exact free_ab_group_elim},
{ intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul},
{ intro k, symmetry, apply homomorphism_eq, apply free_ab_group_elim_unique,
reflexivity }
end
definition free_ab_group_functor (f : X → Y) : free_ab_group X →g free_ab_group Y :=
free_ab_group_elim (free_ab_group_inclusion ∘ f)
-- set_option pp.all true
-- definition free_ab_group.rec {P : free_ab_group X → Type} [H : Πg, is_prop (P g)]
-- (h₁ : Πx, P (free_ab_group_inclusion x))
-- (h₂ : P 0)
-- (h₃ : Πg h, P g → P h → P (g * h))
-- (h₄ : Πg, P g → P g⁻¹) :
-- Πg, P g :=
-- begin
-- refine @set_quotient.rec_prop _ _ _ H _,
-- refine @set_quotient.rec_prop _ _ _ (λx, !H) _,
-- esimp, intro l, induction l with s l ih,
-- exact h₂,
-- induction s with v v,
-- induction v with i y,
-- exact h₃ _ _ (h₁ i y) ih,
-- induction v with i y,
-- refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih,
-- refine transport P _ (h₁ i y⁻¹),
-- refine _ ⬝ !mul_one,
-- refine _ ⬝ ap (mul _) (to_respect_one (dirsum_incl i)),
-- apply gqg_eq_of_rel',
-- apply tr, esimp,
-- refine transport dirsum_rel _ (dirsum_rel.rmk i y⁻¹ y),
-- rewrite [mul.left_inv, mul.assoc],
-- apply ap (mul _),
-- refine _ ⬝ (mul_inv (class_of [inr ⟨i, y⟩]) (ι ⟨i, 1⟩))⁻¹ᵖ,
-- refine ap011 mul _ _,
-- end
end group