2015-06-05 06:08:05 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Author: Haitao Zhang
|
|
|
|
|
|
|
|
|
|
Partitions of a type A into finite subsets of A. Such a partition is represented by
|
|
|
|
|
a function f : A → finset A which maps every element a : A to its equivalence class.
|
|
|
|
|
-/
|
|
|
|
|
import .card
|
|
|
|
|
open function eq.ops
|
|
|
|
|
|
|
|
|
|
variable {A : Type}
|
|
|
|
|
variable [deceqA : decidable_eq A]
|
|
|
|
|
include deceqA
|
|
|
|
|
|
|
|
|
|
namespace finset
|
|
|
|
|
|
|
|
|
|
definition is_partition (f : A → finset A) := ∀ a b, a ∈ f b = (f a = f b)
|
|
|
|
|
|
|
|
|
|
structure partition : Type :=
|
|
|
|
|
(set : finset A) (part : A → finset A) (is_part : is_partition part)
|
|
|
|
|
(complete : set = Union set part)
|
|
|
|
|
|
|
|
|
|
attribute partition.part [coercion]
|
|
|
|
|
|
|
|
|
|
namespace partition
|
|
|
|
|
|
|
|
|
|
definition equiv_classes (f : partition) : finset (finset A) :=
|
|
|
|
|
image (partition.part f) (partition.set f)
|
|
|
|
|
|
|
|
|
|
lemma equiv_class_disjoint (f : partition) (a1 a2 : finset A) (Pa1 : a1 ∈ equiv_classes f)
|
|
|
|
|
(Pa2 : a2 ∈ equiv_classes f) :
|
|
|
|
|
a1 ≠ a2 → a1 ∩ a2 = ∅ :=
|
|
|
|
|
assume Pne,
|
|
|
|
|
assert Pe1 : _, from exists_of_mem_image Pa1, obtain g1 Pg1, from Pe1,
|
|
|
|
|
assert Pe2 : _, from exists_of_mem_image Pa2, obtain g2 Pg2, from Pe2,
|
|
|
|
|
begin
|
|
|
|
|
apply inter_eq_empty_of_disjoint,
|
|
|
|
|
apply disjoint.intro,
|
|
|
|
|
rewrite [eq.symm (and.right Pg1), eq.symm (and.right Pg2)],
|
|
|
|
|
intro x,
|
|
|
|
|
rewrite [*partition.is_part f],
|
|
|
|
|
intro Pxg1, rewrite [Pxg1, and.right Pg1, and.right Pg2],
|
|
|
|
|
intro Pe, exact absurd Pe Pne
|
|
|
|
|
end
|
2015-12-06 07:27:46 +00:00
|
|
|
|
open nat
|
2015-06-05 06:08:05 +00:00
|
|
|
|
theorem class_equation (f : @partition A _) :
|
2015-12-06 07:27:46 +00:00
|
|
|
|
card (partition.set f) = finset.Sum (equiv_classes f) card :=
|
2015-06-05 06:08:05 +00:00
|
|
|
|
let s := (partition.set f), p := (partition.part f), img := image p s in
|
|
|
|
|
calc
|
|
|
|
|
card s = card (Union s p) : partition.complete f
|
|
|
|
|
... = card (Union img id) : image_eq_Union_index_image s p
|
|
|
|
|
... = card (Union (equiv_classes f) id) : rfl
|
2015-12-06 07:27:46 +00:00
|
|
|
|
... = finset.Sum (equiv_classes f) card : card_Union_of_disjoint _ id (equiv_class_disjoint f)
|
2015-06-05 06:08:05 +00:00
|
|
|
|
|
|
|
|
|
lemma equiv_class_refl {f : A → finset A} (Pequiv : is_partition f) : ∀ a, a ∈ f a :=
|
|
|
|
|
take a, by rewrite [Pequiv a a]
|
|
|
|
|
|
|
|
|
|
-- make it a little easier to prove union from restriction
|
|
|
|
|
lemma restriction_imp_union {s : finset A} (f : A → finset A) (Pequiv : is_partition f)
|
|
|
|
|
(Psub : ∀{a}, a ∈ s → f a ⊆ s) :
|
|
|
|
|
s = Union s f :=
|
|
|
|
|
ext (take a, iff.intro
|
|
|
|
|
(assume Pains,
|
|
|
|
|
begin
|
|
|
|
|
rewrite [(Union_insert_of_mem f Pains)⁻¹, Union_insert],
|
|
|
|
|
apply mem_union_l, exact equiv_class_refl Pequiv a
|
|
|
|
|
end)
|
|
|
|
|
(assume Painu,
|
|
|
|
|
have Pclass : ∃ x, x ∈ s ∧ a ∈ f x,
|
|
|
|
|
from iff.elim_left (mem_Union_iff s f _) Painu,
|
|
|
|
|
obtain x Px, from Pclass,
|
|
|
|
|
have Pfx : f x ⊆ s, from Psub (and.left Px),
|
|
|
|
|
mem_of_subset_of_mem Pfx (and.right Px)))
|
|
|
|
|
|
2015-07-16 00:43:25 +00:00
|
|
|
|
lemma binary_union (P : A → Prop) [decP : decidable_pred P] {S : finset A} :
|
|
|
|
|
S = {a ∈ S | P a} ∪ {a ∈ S | ¬(P a)} :=
|
|
|
|
|
ext take a, iff.intro
|
2015-07-24 01:01:46 +00:00
|
|
|
|
(suppose a ∈ S, decidable.by_cases
|
2015-08-08 22:10:44 +00:00
|
|
|
|
(suppose P a, mem_union_l (mem_sep_of_mem `a ∈ S` this))
|
|
|
|
|
(suppose ¬ P a, mem_union_r (mem_sep_of_mem `a ∈ S` this)))
|
|
|
|
|
(suppose a ∈ sep P S ∪ {a ∈ S | ¬ P a}, or.elim (mem_or_mem_of_mem_union this)
|
|
|
|
|
(suppose a ∈ sep P S, mem_of_mem_sep this)
|
|
|
|
|
(suppose a ∈ {a ∈ S | ¬ P a}, mem_of_mem_sep this))
|
2015-07-16 00:43:25 +00:00
|
|
|
|
|
|
|
|
|
lemma binary_inter_empty {P : A → Prop} [decP : decidable_pred P] {S : finset A} :
|
|
|
|
|
{a ∈ S | P a} ∩ {a ∈ S | ¬(P a)} = ∅ :=
|
2015-08-08 22:10:44 +00:00
|
|
|
|
inter_eq_empty (take a, assume Pa nPa, absurd (of_mem_sep Pa) (of_mem_sep nPa))
|
2015-07-16 00:43:25 +00:00
|
|
|
|
|
|
|
|
|
definition disjoint_sets (S : finset (finset A)) : Prop :=
|
|
|
|
|
∀ s₁ s₂ (P₁ : s₁ ∈ S) (P₂ : s₂ ∈ S), s₁ ≠ s₂ → s₁ ∩ s₂ = ∅
|
|
|
|
|
|
2015-08-08 22:10:44 +00:00
|
|
|
|
lemma disjoint_sets_sep_of_disjoint_sets {P : finset A → Prop} [decP : decidable_pred P] {S : finset (finset A)} :
|
2015-07-16 00:43:25 +00:00
|
|
|
|
disjoint_sets S → disjoint_sets {s ∈ S | P s} :=
|
2015-08-08 22:10:44 +00:00
|
|
|
|
assume Pds, take s₁ s₂, assume P₁ P₂, Pds s₁ s₂ (mem_of_mem_sep P₁) (mem_of_mem_sep P₂)
|
2015-07-16 00:43:25 +00:00
|
|
|
|
|
|
|
|
|
lemma binary_inter_empty_Union_disjoint_sets {P : finset A → Prop} [decP : decidable_pred P] {S : finset (finset A)} :
|
|
|
|
|
disjoint_sets S → Union {s ∈ S | P s} id ∩ Union {s ∈ S | ¬P s} id = ∅ :=
|
|
|
|
|
assume Pds, inter_eq_empty (take a, assume Pa nPa,
|
|
|
|
|
obtain s Psin Pains, from iff.elim_left !mem_Union_iff Pa,
|
|
|
|
|
obtain t Ptin Paint, from iff.elim_left !mem_Union_iff nPa,
|
2015-07-24 01:01:46 +00:00
|
|
|
|
assert s ≠ t,
|
2015-08-08 22:10:44 +00:00
|
|
|
|
from assume Peq, absurd (Peq ▸ of_mem_sep Psin) (of_mem_sep Ptin),
|
2016-02-04 03:20:29 +00:00
|
|
|
|
have e₁ : s ∩ t = empty, from Pds s t (mem_of_mem_sep Psin) (mem_of_mem_sep Ptin) `s ≠ t`,
|
|
|
|
|
have a ∈ s ∩ t, from mem_inter Pains Paint,
|
|
|
|
|
have a ∈ empty, from e₁ ▸ this,
|
|
|
|
|
absurd this !not_mem_empty)
|
2015-07-16 00:43:25 +00:00
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
variables {B: Type} [deceqB : decidable_eq B]
|
|
|
|
|
include deceqB
|
|
|
|
|
|
|
|
|
|
lemma binary_Union (f : A → finset B) {P : A → Prop} [decP : decidable_pred P] {s : finset A} :
|
|
|
|
|
Union s f = Union {a ∈ s | P a} f ∪ Union {a ∈ s | ¬P a} f :=
|
|
|
|
|
begin rewrite [binary_union P at {1}], apply Union_union, exact binary_inter_empty end
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
2015-12-06 07:27:46 +00:00
|
|
|
|
open nat
|
2015-07-16 21:13:06 +00:00
|
|
|
|
section
|
|
|
|
|
|
|
|
|
|
variables {B : Type} [acmB : add_comm_monoid B]
|
|
|
|
|
include acmB
|
|
|
|
|
|
|
|
|
|
lemma Sum_binary_union (f : A → B) (P : A → Prop) [decP : decidable_pred P] {S : finset A} :
|
|
|
|
|
Sum S f = Sum {s ∈ S | P s} f + Sum {s ∈ S | ¬P s} f :=
|
|
|
|
|
calc
|
|
|
|
|
Sum S f = Sum ({s ∈ S | P s} ∪ {s ∈ S | ¬(P s)}) f : binary_union
|
|
|
|
|
... = Sum {s ∈ S | P s} f + Sum {s ∈ S | ¬P s} f : Sum_union f binary_inter_empty
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
2015-07-16 00:43:25 +00:00
|
|
|
|
lemma card_binary_Union_disjoint_sets (P : finset A → Prop) [decP : decidable_pred P] {S : finset (finset A)} :
|
2015-07-16 21:13:06 +00:00
|
|
|
|
disjoint_sets S → card (Union S id) = Sum {s ∈ S | P s} card + Sum {s ∈ S | ¬P s} card :=
|
2015-07-16 00:43:25 +00:00
|
|
|
|
assume Pds, calc
|
2015-07-16 21:13:06 +00:00
|
|
|
|
card (Union S id)
|
|
|
|
|
= card (Union {s ∈ S | P s} id ∪ Union {s ∈ S | ¬P s} id) : binary_Union
|
|
|
|
|
... = card (Union {s ∈ S | P s} id) + card (Union {s ∈ S | ¬P s} id) : card_union_of_disjoint (binary_inter_empty_Union_disjoint_sets Pds)
|
2015-08-08 22:10:44 +00:00
|
|
|
|
... = Sum {s ∈ S | P s} card + Sum {s ∈ S | ¬P s} card : by rewrite [*(card_Union_of_disjoint _ id (disjoint_sets_sep_of_disjoint_sets Pds))]
|
2015-07-16 00:43:25 +00:00
|
|
|
|
|
2015-06-05 06:08:05 +00:00
|
|
|
|
end partition
|
|
|
|
|
end finset
|