lean2/hott/types/sigma.hlean

380 lines
15 KiB
Text
Raw Normal View History

2014-12-11 23:14:53 -05:00
/-
Copyright (c) 2014-15 Floris van Doorn. All rights reserved.
2014-12-11 23:14:53 -05:00
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Partially ported from Coq HoTT
2014-12-11 23:14:53 -05:00
Theorems about sigma-types (dependent sums)
-/
2014-12-12 14:19:06 -05:00
import types.prod
2014-12-11 23:14:53 -05:00
2014-12-12 13:17:50 -05:00
open eq sigma sigma.ops equiv is_equiv
2014-12-11 23:14:53 -05:00
namespace sigma
local infixr ∘ := function.compose --remove
2014-12-11 23:14:53 -05:00
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
{D : Πa b, C a b → Type}
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a}
definition destruct := @sigma.cases_on
protected definition eta : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u
| eta ⟨u₁, u₂⟩ := idp
2014-12-11 23:14:53 -05:00
definition eta2 : Π (u : Σa b, C a b), ⟨u.1, u.2.1, u.2.2⟩ = u
| eta2 ⟨u₁, u₂, u₃⟩ := idp
2014-12-11 23:14:53 -05:00
definition eta3 : Π (u : Σa b c, D a b c), ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ = u
| eta3 ⟨u₁, u₂, u₃, u₄⟩ := idp
2014-12-11 23:14:53 -05:00
definition dpair_eq_dpair (p : a = a') (q : b =[p] b') : ⟨a, b⟩ = ⟨a', b'⟩ :=
by induction q; reflexivity
2014-12-11 23:14:53 -05:00
definition sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) : u = v :=
by induction u; induction v; exact (dpair_eq_dpair p q)
2014-12-11 23:14:53 -05:00
/- Projections of paths from a total space -/
definition eq_pr1 (p : u = v) : u.1 = v.1 :=
ap pr1 p
2014-12-11 23:14:53 -05:00
postfix `..1`:(max+1) := eq_pr1
2014-12-11 23:14:53 -05:00
definition eq_pr2 (p : u = v) : u.2 =[p..1] v.2 :=
by induction p; exact idpo
postfix `..2`:(max+1) := eq_pr2
2014-12-11 23:14:53 -05:00
definition dpair_sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2)
: ⟨(sigma_eq p q)..1, (sigma_eq p q)..2⟩ = ⟨p, q⟩ :=
by induction u; induction v;esimp at *;induction q;esimp
2014-12-11 23:14:53 -05:00
definition sigma_eq_pr1 (p : u.1 = v.1) (q : u.2 =[p] v.2) : (sigma_eq p q)..1 = p :=
(dpair_sigma_eq p q)..1
2014-12-11 23:14:53 -05:00
definition sigma_eq_pr2 (p : u.1 = v.1) (q : u.2 =[p] v.2)
: (sigma_eq p q)..2 =[sigma_eq_pr1 p q] q :=
(dpair_sigma_eq p q)..2
2014-12-11 23:14:53 -05:00
definition sigma_eq_eta (p : u = v) : sigma_eq (p..1) (p..2) = p :=
by induction p; induction u; reflexivity
2014-12-11 23:14:53 -05:00
definition tr_pr1_sigma_eq {B' : A → Type} (p : u.1 = v.1) (q : u.2 =[p] v.2)
: transport (λx, B' x.1) (sigma_eq p q) = transport B' p :=
by induction u; induction v; esimp at *;induction q; reflexivity
2014-12-11 23:14:53 -05:00
2014-12-12 13:17:50 -05:00
/- the uncurried version of sigma_eq. We will prove that this is an equivalence -/
2014-12-11 23:14:53 -05:00
definition sigma_eq_unc : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2), u = v
| sigma_eq_unc ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂
2014-12-11 23:14:53 -05:00
definition dpair_sigma_eq_unc : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2),
⟨(sigma_eq_unc pq)..1, (sigma_eq_unc pq)..2⟩ = pq
| dpair_sigma_eq_unc ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂
2014-12-11 23:14:53 -05:00
definition sigma_eq_pr1_unc (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2)
: (sigma_eq_unc pq)..1 = pq.1 :=
(dpair_sigma_eq_unc pq)..1
2014-12-11 23:14:53 -05:00
definition sigma_eq_pr2_unc (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) :
(sigma_eq_unc pq)..2 =[sigma_eq_pr1_unc pq] pq.2 :=
(dpair_sigma_eq_unc pq)..2
2014-12-11 23:14:53 -05:00
definition sigma_eq_eta_unc (p : u = v) : sigma_eq_unc ⟨p..1, p..2⟩ = p :=
sigma_eq_eta p
2014-12-11 23:14:53 -05:00
definition tr_sigma_eq_pr1_unc {B' : A → Type}
(pq : Σ(p : u.1 = v.1), u.2 =[p] v.2)
: transport (λx, B' x.1) (@sigma_eq_unc A B u v pq) = transport B' pq.1 :=
destruct pq tr_pr1_sigma_eq
2014-12-11 23:14:53 -05:00
definition is_equiv_sigma_eq [instance] (u v : Σa, B a)
: is_equiv (@sigma_eq_unc A B u v) :=
adjointify sigma_eq_unc
2014-12-11 23:14:53 -05:00
(λp, ⟨p..1, p..2⟩)
sigma_eq_eta_unc
dpair_sigma_eq_unc
definition equiv_sigma_eq (u v : Σa, B a) : (Σ(p : u.1 = v.1), u.2 =[p] v.2) ≃ (u = v) :=
equiv.mk sigma_eq_unc !is_equiv_sigma_eq
definition dpair_eq_dpair_con (p1 : a = a' ) (q1 : b =[p1] b' )
(p2 : a' = a'') (q2 : b' =[p2] b'') :
dpair_eq_dpair (p1 ⬝ p2) (q1 ⬝o q2) = dpair_eq_dpair p1 q1 ⬝ dpair_eq_dpair p2 q2 :=
by induction q1; induction q2; reflexivity
definition sigma_eq_con (p1 : u.1 = v.1) (q1 : u.2 =[p1] v.2)
(p2 : v.1 = w.1) (q2 : v.2 =[p2] w.2) :
sigma_eq (p1 ⬝ p2) (q1 ⬝o q2) = sigma_eq p1 q1 ⬝ sigma_eq p2 q2 :=
by induction u; induction v; induction w; apply dpair_eq_dpair_con
2014-12-11 23:14:53 -05:00
local attribute dpair_eq_dpair [reducible]
definition dpair_eq_dpair_con_idp (p : a = a') (q : b =[p] b') :
dpair_eq_dpair p q = dpair_eq_dpair p !pathover_tr ⬝
dpair_eq_dpair idp (pathover_idp_of_eq (tr_eq_of_pathover q)) :=
by induction q; reflexivity
2014-12-11 23:14:53 -05:00
/- eq_pr1 commutes with the groupoid structure. -/
2014-12-11 23:14:53 -05:00
definition eq_pr1_idp (u : Σa, B a) : (refl u) ..1 = refl (u.1) := idp
definition eq_pr1_con (p : u = v) (q : v = w) : (p ⬝ q) ..1 = (p..1) ⬝ (q..1) := !ap_con
definition eq_pr1_inv (p : u = v) : p⁻¹ ..1 = (p..1)⁻¹ := !ap_inv
2014-12-11 23:14:53 -05:00
/- Applying dpair to one argument is the same as dpair_eq_dpair with reflexivity in the first place. -/
definition ap_dpair (q : b₁ = b₂) :
ap (sigma.mk a) q = dpair_eq_dpair idp (pathover_idp_of_eq q) :=
by induction q; reflexivity
2014-12-11 23:14:53 -05:00
2014-12-12 13:17:50 -05:00
/- Dependent transport is the same as transport along a sigma_eq. -/
2014-12-11 23:14:53 -05:00
2014-12-12 13:17:50 -05:00
definition transportD_eq_transport (p : a = a') (c : C a b) :
p ▸D c = transport (λu, C (u.1) (u.2)) (dpair_eq_dpair p !pathover_tr) c :=
by induction p; reflexivity
2014-12-11 23:14:53 -05:00
definition sigma_eq_eq_sigma_eq {p1 q1 : a = a'} {p2 : b =[p1] b'} {q2 : b =[q1] b'}
(r : p1 = q1) (s : p2 =[r] q2) : sigma_eq p1 p2 = sigma_eq q1 q2 :=
by induction s; reflexivity
2014-12-11 23:14:53 -05:00
/- A path between paths in a total space is commonly shown component wise. -/
definition sigma_eq2 {p q : u = v} (r : p..1 = q..1) (s : p..2 =[r] q..2)
: p = q :=
2014-12-11 23:14:53 -05:00
begin
revert q r s,
induction p, induction u with u1 u2,
intro q r s,
transitivity sigma_eq q..1 q..2,
apply sigma_eq_eq_sigma_eq r s,
apply sigma_eq_eta,
2014-12-11 23:14:53 -05:00
end
definition sigma_eq2_unc {p q : u = v} (rs : Σ(r : p..1 = q..1), p..2 =[r] q..2) : p = q :=
destruct rs sigma_eq2
2014-12-11 23:14:53 -05:00
/- Transport -/
/- The concrete description of transport in sigmas (and also pis) is rather trickier than in the other types. In particular, these cannot be described just in terms of transport in simpler types; they require also the dependent transport [transportD].
In particular, this indicates why `transport` alone cannot be fully defined by induction on the structure of types, although Id-elim/transportD can be (cf. Observational Type Theory). A more thorough set of lemmas, along the lines of the present ones but dealing with Id-elim rather than just transport, might be nice to have eventually? -/
2014-12-12 13:17:50 -05:00
definition transport_eq (p : a = a') (bc : Σ(b : B a), C a b)
: p ▸ bc = ⟨p ▸ bc.1, p ▸D bc.2⟩ :=
by induction p; induction bc; reflexivity
2014-12-11 23:14:53 -05:00
/- The special case when the second variable doesn't depend on the first is simpler. -/
definition tr_eq_nondep {B : Type} {C : A → B → Type} (p : a = a') (bc : Σ(b : B), C a b)
: p ▸ bc = ⟨bc.1, p ▸ bc.2⟩ :=
by induction p; induction bc; reflexivity
2014-12-11 23:14:53 -05:00
/- Or if the second variable contains a first component that doesn't depend on the first. -/
definition tr_eq2_nondep {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a = a')
(bcd : Σ(b : B a) (c : C a), D a b c) : p ▸ bcd = ⟨p ▸ bcd.1, p ▸ bcd.2.1, p ▸D2 bcd.2.2⟩ :=
2014-12-11 23:14:53 -05:00
begin
induction p, induction bcd with b cd, induction cd, reflexivity
2014-12-11 23:14:53 -05:00
end
/- Pathovers -/
definition eta_pathover (p : a = a') (bc : Σ(b : B a), C a b)
: bc =[p] ⟨p ▸ bc.1, p ▸D bc.2⟩ :=
by induction p; induction bc; apply idpo
definition sigma_pathover (p : a = a') (u : Σ(b : B a), C a b) (v : Σ(b : B a'), C a' b)
(r : u.1 =[p] v.1) (s : u.2 =[apo011 C p r] v.2) : u =[p] v :=
begin
induction u, induction v, esimp at *, induction r,
esimp [apo011] at s, induction s using idp_rec_on, apply idpo
end
/- TODO:
* define the projections from the type u =[p] v
* show that the uncurried version of sigma_pathover is an equivalence
-/
2014-12-11 23:14:53 -05:00
/- Functorial action -/
variables (f : A → A') (g : Πa, B a → B' (f a))
definition sigma_functor [unfold-c 7] (u : Σa, B a) : Σa', B' a' :=
2014-12-11 23:14:53 -05:00
⟨f u.1, g u.1 u.2⟩
/- Equivalences -/
definition is_equiv_sigma_functor [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
: is_equiv (sigma_functor f g) :=
adjointify (sigma_functor f g)
(sigma_functor f⁻¹ (λ(a' : A') (b' : B' a'),
((g (f⁻¹ a'))⁻¹ (transport B' (right_inv f a')⁻¹ b'))))
2014-12-11 23:14:53 -05:00
begin
intro u', induction u' with a' b',
apply sigma_eq (right_inv f a'),
rewrite [▸*,right_inv (g (f⁻¹ a')),▸*],
apply tr_pathover
2014-12-11 23:14:53 -05:00
end
begin
intro u,
induction u with a b,
apply (sigma_eq (left_inv f a)),
apply pathover_of_tr_eq,
rewrite [▸*,adj f,-(fn_tr_eq_tr_fn (left_inv f a) (λ a, (g a)⁻¹)),
▸*,transport_compose B' f,tr_inv_tr,left_inv]
2014-12-11 23:14:53 -05:00
end
definition sigma_equiv_sigma_of_is_equiv [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
2014-12-11 23:14:53 -05:00
: (Σa, B a) ≃ (Σa', B' a') :=
equiv.mk (sigma_functor f g) !is_equiv_sigma_functor
2014-12-11 23:14:53 -05:00
definition sigma_equiv_sigma (Hf : A ≃ A') (Hg : Π a, B a ≃ B' (to_fun Hf a)) :
2014-12-11 23:14:53 -05:00
(Σa, B a) ≃ (Σa', B' a') :=
sigma_equiv_sigma_of_is_equiv (to_fun Hf) (λ a, to_fun (Hg a))
2014-12-11 23:14:53 -05:00
definition sigma_equiv_sigma_id {B' : A → Type} (Hg : Π a, B a ≃ B' a) : (Σa, B a) ≃ Σa, B' a :=
sigma_equiv_sigma equiv.refl Hg
2014-12-11 23:14:53 -05:00
definition ap_sigma_functor_eq_dpair (p : a = a') (q : b =[p] b') :
ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover.rec_on q idpo) :=
by induction q; reflexivity
2014-12-11 23:14:53 -05:00
-- definition ap_sigma_functor_eq (p : u.1 = v.1) (q : u.2 =[p] v.2)
-- : ap (sigma_functor f g) (sigma_eq p q) =
-- sigma_eq (ap f p)
-- ((transport_compose B' f p (g u.1 u.2))⁻¹ ⬝ (fn_tr_eq_tr_fn p g u.2)⁻¹ ⬝ ap (g v.1) q) :=
-- by induction u; induction v; apply ap_sigma_functor_eq_dpair
2014-12-11 23:14:53 -05:00
/- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/
open is_trunc
definition is_equiv_pr1 [instance] (B : A → Type) [H : Π a, is_contr (B a)]
: is_equiv (@pr1 A B) :=
adjointify pr1
2014-12-11 23:14:53 -05:00
(λa, ⟨a, !center⟩)
(λa, idp)
(λu, sigma_eq idp (pathover_idp_of_eq !center_eq))
2014-12-11 23:14:53 -05:00
definition sigma_equiv_of_is_contr_pr2 [H : Π a, is_contr (B a)] : (Σa, B a) ≃ A :=
equiv.mk pr1 _
2014-12-11 23:14:53 -05:00
/- definition 3.11.9(ii): Dually, summing up over a contractible type does nothing. -/
definition sigma_equiv_of_is_contr_pr1 (B : A → Type) [H : is_contr A] : (Σa, B a) ≃ B (center A)
2014-12-11 23:14:53 -05:00
:=
equiv.mk _ (adjointify
(λu, (center_eq u.1)⁻¹ ▸ u.2)
2014-12-11 23:14:53 -05:00
(λb, ⟨!center, b⟩)
(λb, ap (λx, x ▸ b) !hprop_eq_of_is_contr)
(λu, sigma_eq !center_eq !tr_pathover))
2014-12-11 23:14:53 -05:00
/- Associativity -/
--this proof is harder than in Coq because we don't have eta definitionally for sigma
definition sigma_assoc_equiv (C : (Σa, B a) → Type) : (Σa b, C ⟨a, b⟩) ≃ (Σu, C u) :=
2014-12-11 23:14:53 -05:00
equiv.mk _ (adjointify
(λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩)
(λuc, ⟨uc.1.1, uc.1.2, !sigma.eta⁻¹ ▸ uc.2⟩)
begin intro uc, induction uc with u c, induction u, reflexivity end
begin intro av, induction av with a v, induction v, reflexivity end)
2014-12-11 23:14:53 -05:00
2015-05-02 17:17:50 -04:00
open prod prod.ops
2014-12-11 23:14:53 -05:00
definition assoc_equiv_prod (C : (A × A') → Type) : (Σa a', C (a,a')) ≃ (Σu, C u) :=
equiv.mk _ (adjointify
(λav, ⟨(av.1, av.2.1), av.2.2⟩)
(λuc, ⟨pr₁ (uc.1), pr₂ (uc.1), !prod.eta⁻¹ ▸ uc.2⟩)
2014-12-11 23:14:53 -05:00
proof (λuc, destruct uc (λu, prod.destruct u (λa b c, idp))) qed
proof (λav, destruct av (λa v, destruct v (λb c, idp))) qed)
/- Symmetry -/
definition comm_equiv_unc (C : A × A' → Type) : (Σa a', C (a, a')) ≃ (Σa' a, C (a, a')) :=
2014-12-11 23:14:53 -05:00
calc
(Σa a', C (a, a')) ≃ Σu, C u : assoc_equiv_prod
... ≃ Σv, C (flip v) : sigma_equiv_sigma !prod_comm_equiv
2014-12-11 23:14:53 -05:00
(λu, prod.destruct u (λa a', equiv.refl))
... ≃ (Σa' a, C (a, a')) : assoc_equiv_prod
definition sigma_comm_equiv (C : A → A' → Type) : (Σa a', C a a') ≃ (Σa' a, C a a') :=
comm_equiv_unc (λu, C (prod.pr1 u) (prod.pr2 u))
2014-12-11 23:14:53 -05:00
definition equiv_prod (A B : Type) : (Σ(a : A), B) ≃ A × B :=
equiv.mk _ (adjointify
(λs, (s.1, s.2))
(λp, ⟨pr₁ p, pr₂ p⟩)
proof (λp, prod.destruct p (λa b, idp)) qed
proof (λs, destruct s (λa b, idp)) qed)
definition comm_equiv_nondep (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A :=
2014-12-11 23:14:53 -05:00
calc
(Σ(a : A), B) ≃ A × B : equiv_prod
... ≃ B × A : prod_comm_equiv
2014-12-11 23:14:53 -05:00
... ≃ Σ(b : B), A : equiv_prod
/- ** Universal mapping properties -/
/- *** The positive universal property. -/
section
definition is_equiv_sigma_rec [instance] (C : (Σa, B a) → Type)
: is_equiv (sigma.rec : (Πa b, C ⟨a, b⟩) → Πab, C ab) :=
2014-12-11 23:14:53 -05:00
adjointify _ (λ g a b, g ⟨a, b⟩)
(λ g, proof eq_of_homotopy (λu, destruct u (λa b, idp)) qed)
2014-12-12 14:19:06 -05:00
(λ f, refl f)
2014-12-11 23:14:53 -05:00
definition equiv_sigma_rec (C : (Σa, B a) → Type)
2014-12-11 23:14:53 -05:00
: (Π(a : A) (b: B a), C ⟨a, b⟩) ≃ (Πxy, C xy) :=
equiv.mk sigma.rec _
/- *** The negative universal property. -/
protected definition coind_unc (fg : Σ(f : Πa, B a), Πa, C a (f a)) (a : A)
: Σ(b : B a), C a b :=
⟨fg.1 a, fg.2 a⟩
2014-12-11 23:14:53 -05:00
protected definition coind (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b :=
sigma.coind_unc ⟨f, g⟩ a
2014-12-11 23:14:53 -05:00
--is the instance below dangerous?
--in Coq this can be done without function extensionality
definition is_equiv_coind [instance] (C : Πa, B a → Type)
: is_equiv (@sigma.coind_unc _ _ C) :=
2014-12-11 23:14:53 -05:00
adjointify _ (λ h, ⟨λa, (h a).1, λa, (h a).2⟩)
(λ h, proof eq_of_homotopy (λu, !sigma.eta) qed)
2014-12-11 23:14:53 -05:00
(λfg, destruct fg (λ(f : Π (a : A), B a) (g : Π (x : A), C x (f x)), proof idp qed))
definition sigma_pi_equiv_pi_sigma : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) :=
equiv.mk sigma.coind_unc _
2014-12-11 23:14:53 -05:00
end
/- ** Subtypes (sigma types whose second components are hprops) -/
/- To prove equality in a subtype, we only need equality of the first component. -/
definition subtype_eq [H : Πa, is_hprop (B a)] (u v : Σa, B a) : u.1 = v.1 → u = v :=
sigma_eq_unc ∘ inv pr1
2014-12-11 23:14:53 -05:00
definition is_equiv_subtype_eq [H : Πa, is_hprop (B a)] (u v : Σa, B a)
: is_equiv (subtype_eq u v) :=
!is_equiv_compose
local attribute is_equiv_subtype_eq [instance]
2014-12-11 23:14:53 -05:00
definition equiv_subtype [H : Πa, is_hprop (B a)] (u v : Σa, B a) : (u.1 = v.1) ≃ (u = v) :=
equiv.mk !subtype_eq _
2014-12-11 23:14:53 -05:00
/- truncatedness -/
definition is_trunc_sigma (B : A → Type) (n : trunc_index)
2014-12-11 23:14:53 -05:00
[HA : is_trunc n A] [HB : Πa, is_trunc n (B a)] : is_trunc n (Σa, B a) :=
begin
revert A B HA HB,
induction n with n IH,
{ intro A B HA HB, fapply is_trunc_equiv_closed_rev, apply sigma_equiv_of_is_contr_pr1},
{ intro A B HA HB, apply is_trunc_succ_intro, intro u v,
apply is_trunc_equiv_closed,
apply equiv_sigma_eq,
exact IH _ _ _ _}
2014-12-11 23:14:53 -05:00
end
end sigma
attribute sigma.is_trunc_sigma [instance] [priority 1505]
2014-12-11 23:14:53 -05:00
open is_trunc sigma prod
/- truncatedness -/
definition prod.is_trunc_prod [instance] [priority 1490] (A B : Type) (n : trunc_index)
[HA : is_trunc n A] [HB : is_trunc n B] : is_trunc n (A × B) :=
is_trunc.is_trunc_equiv_closed n !equiv_prod