lean2/library/data/nat/basic.lean

268 lines
7.9 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad
Basic operations on the natural numbers.
-/
import ..num algebra.ring
open binary eq.ops
namespace nat
/- a variant of add, defined by recursion on the first argument -/
definition addl (x y : ) : :=
nat.rec y (λ n r, succ r) x
2015-09-30 15:06:31 +00:00
infix ` ⊕ `:65 := addl
theorem addl_succ_right (n m : ) : n ⊕ succ m = succ (n ⊕ m) :=
nat.induction_on n
rfl
(λ n₁ ih, calc
succ n₁ ⊕ succ m = succ (n₁ ⊕ succ m) : rfl
... = succ (succ (n₁ ⊕ m)) : ih
... = succ (succ n₁ ⊕ m) : rfl)
theorem add_eq_addl (x : ) : ∀y, x + y = x ⊕ y :=
nat.induction_on x
(λ y, nat.induction_on y
rfl
(λ y₁ ih, calc
0 + succ y₁ = succ (0 + y₁) : rfl
... = succ (0 ⊕ y₁) : {ih}
... = 0 ⊕ (succ y₁) : rfl))
(λ x₁ ih₁ y, nat.induction_on y
(calc
succ x₁ + 0 = succ (x₁ + 0) : rfl
... = succ (x₁ ⊕ 0) : {ih₁ 0}
... = succ x₁ ⊕ 0 : rfl)
(λ y₁ ih₂, calc
succ x₁ + succ y₁ = succ (succ x₁ + y₁) : rfl
... = succ (succ x₁ ⊕ y₁) : {ih₂}
... = succ x₁ ⊕ succ y₁ : addl_succ_right))
/- successor and predecessor -/
theorem succ_ne_zero (n : ) : succ n ≠ 0 :=
by contradiction
-- add_rewrite succ_ne_zero
theorem pred_zero [simp] : pred 0 = 0 :=
rfl
theorem pred_succ [simp] (n : ) : pred (succ n) = n :=
rfl
theorem eq_zero_or_eq_succ_pred (n : ) : n = 0 n = succ (pred n) :=
nat.induction_on n
(or.inl rfl)
(take m IH, or.inr
(show succ m = succ (pred (succ m)), from congr_arg succ !pred_succ⁻¹))
theorem exists_eq_succ_of_ne_zero {n : } (H : n ≠ 0) : ∃k : , n = succ k :=
exists.intro _ (or_resolve_right !eq_zero_or_eq_succ_pred H)
theorem succ.inj {n m : } (H : succ n = succ m) : n = m :=
nat.no_confusion H imp.id
abbreviation eq_of_succ_eq_succ := @succ.inj
theorem succ_ne_self {n : } : succ n ≠ n :=
nat.induction_on n
(take H : 1 = 0,
have ne : 1 ≠ 0, from !succ_ne_zero,
absurd H ne)
(take k IH H, IH (succ.inj H))
theorem discriminate {B : Prop} {n : } (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B :=
have H : n = n → B, from nat.cases_on n H1 H2,
H rfl
theorem two_step_induction_on {P : → Prop} (a : ) (H1 : P 0) (H2 : P 1)
(H3 : ∀ (n : ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
have stronger : P a ∧ P (succ a), from
nat.induction_on a
(and.intro H1 H2)
(take k IH,
have IH1 : P k, from and.elim_left IH,
have IH2 : P (succ k), from and.elim_right IH,
and.intro IH2 (H3 k IH1 IH2)),
and.elim_left stronger
theorem sub_induction {P : → Prop} (n m : ) (H1 : ∀m, P 0 m)
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m :=
have general : ∀m, P n m, from nat.induction_on n H1
(take k : ,
assume IH : ∀m, P k m,
take m : ,
nat.cases_on m (H2 k) (take l, (H3 k l (IH l)))),
general m
/- addition -/
protected theorem add_zero (n : ) : n + 0 = n :=
rfl
theorem add_succ (n m : ) : n + succ m = succ (n + m) :=
rfl
/-
Remark: we use 'local attributes' because in the end of the file
we show not is a comm_semiring, and we will automatically inherit
the associated [simp] lemmas from algebra
-/
local attribute nat.add_zero nat.add_succ [simp]
protected theorem zero_add (n : ) : 0 + n = n :=
nat.induction_on n (by simp) (by simp)
theorem succ_add (n m : ) : (succ n) + m = succ (n + m) :=
nat.induction_on m (by simp) (by simp)
local attribute nat.zero_add nat.succ_add [simp]
protected theorem add_comm (n m : ) : n + m = m + n :=
nat.induction_on m (by simp) (by simp)
theorem succ_add_eq_succ_add (n m : ) : succ n + m = n + succ m :=
by simp
protected theorem add_assoc (n m k : ) : (n + m) + k = n + (m + k) :=
nat.induction_on k (by simp) (by simp)
protected theorem add_left_comm : Π (n m k : ), n + (m + k) = m + (n + k) :=
left_comm nat.add_comm nat.add_assoc
local attribute nat.add_comm nat.add_assoc nat.add_left_comm [simp]
protected theorem add_right_comm : Π (n m k : ), n + m + k = n + k + m :=
right_comm nat.add_comm nat.add_assoc
protected theorem add_left_cancel {n m k : } : n + m = n + k → m = k :=
nat.induction_on n (by simp)
(take (n : ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
have succ (n + m) = succ (n + k), by simp,
have n + m = n + k, from succ.inj this,
IH this)
protected theorem add_right_cancel {n m k : } (H : n + m = k + m) : n = k :=
have H2 : m + n = m + k, by simp,
nat.add_left_cancel H2
theorem eq_zero_of_add_eq_zero_right {n m : } : n + m = 0 → n = 0 :=
nat.induction_on n
(by simp)
(take k IH,
assume H : succ k + m = 0,
absurd
(show succ (k + m) = 0, by simp)
!succ_ne_zero)
theorem eq_zero_of_add_eq_zero_left {n m : } (H : n + m = 0) : m = 0 :=
eq_zero_of_add_eq_zero_right (!nat.add_comm ⬝ H)
theorem eq_zero_and_eq_zero_of_add_eq_zero {n m : } (H : n + m = 0) : n = 0 ∧ m = 0 :=
and.intro (eq_zero_of_add_eq_zero_right H) (eq_zero_of_add_eq_zero_left H)
theorem add_one (n : ) : n + 1 = succ n := rfl
local attribute add_one [simp]
theorem one_add (n : ) : 1 + n = succ n :=
by simp
theorem succ_eq_add_one (n : ) : succ n = n + 1 :=
rfl
/- multiplication -/
protected theorem mul_zero (n : ) : n * 0 = 0 :=
rfl
theorem mul_succ (n m : ) : n * succ m = n * m + n :=
rfl
local attribute nat.mul_zero nat.mul_succ [simp]
-- commutativity, distributivity, associativity, identity
protected theorem zero_mul (n : ) : 0 * n = 0 :=
nat.induction_on n (by simp) (by simp)
theorem succ_mul (n m : ) : (succ n) * m = (n * m) + m :=
nat.induction_on m (by simp) (by simp)
local attribute nat.zero_mul nat.succ_mul [simp]
protected theorem mul_comm (n m : ) : n * m = m * n :=
nat.induction_on m (by simp) (by simp)
protected theorem right_distrib (n m k : ) : (n + m) * k = n * k + m * k :=
nat.induction_on k (by simp) (by simp)
protected theorem left_distrib (n m k : ) : n * (m + k) = n * m + n * k :=
nat.induction_on k (by simp) (by simp)
local attribute nat.mul_comm nat.right_distrib nat.left_distrib [simp]
protected theorem mul_assoc (n m k : ) : (n * m) * k = n * (m * k) :=
nat.induction_on k (by simp) (by simp)
local attribute nat.mul_assoc [simp]
protected theorem mul_one (n : ) : n * 1 = n :=
calc
n * 1 = n * 0 + n : mul_succ
... = n : by simp
local attribute nat.mul_one [simp]
protected theorem one_mul (n : ) : 1 * n = n :=
by simp
local attribute nat.one_mul [simp]
theorem eq_zero_or_eq_zero_of_mul_eq_zero {n m : } : n * m = 0 → n = 0 m = 0 :=
nat.cases_on n (by simp)
(take n',
nat.cases_on m
(by simp)
(take m', assume H : succ n' * succ m' = 0,
absurd
(calc
0 = succ n' * succ m' : by simp
... = succ (succ n' * m' + n') : by simp)⁻¹
!succ_ne_zero))
protected definition comm_semiring [reducible] [trans_instance] : comm_semiring nat :=
⦃comm_semiring,
add := nat.add,
add_assoc := nat.add_assoc,
zero := nat.zero,
zero_add := nat.zero_add,
add_zero := nat.add_zero,
add_comm := nat.add_comm,
mul := nat.mul,
mul_assoc := nat.mul_assoc,
one := nat.succ nat.zero,
one_mul := nat.one_mul,
mul_one := nat.mul_one,
left_distrib := nat.left_distrib,
right_distrib := nat.right_distrib,
zero_mul := nat.zero_mul,
mul_zero := nat.mul_zero,
mul_comm := nat.mul_comm⦄
end nat
section
open nat
definition iterate {A : Type} (op : A → A) : → A → A
| 0 := λ a, a
| (succ k) := λ a, op (iterate k a)
notation f`^[`n`]` := iterate f n
end