2015-02-21 00:30:32 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
2015-05-14 02:01:48 +00:00
|
|
|
|
Authors: Jakob von Raumer, Floris van Doorn
|
2015-02-21 00:30:32 +00:00
|
|
|
|
|
|
|
|
|
Ported from Coq HoTT
|
|
|
|
|
-/
|
|
|
|
|
|
2015-11-13 22:17:02 +00:00
|
|
|
|
import arity .eq .bool .unit .sigma .nat.basic
|
2016-02-15 19:40:25 +00:00
|
|
|
|
open is_trunc eq prod sigma nat equiv option is_equiv bool unit algebra equiv.ops
|
2014-12-12 04:14:53 +00:00
|
|
|
|
|
2015-05-14 02:01:48 +00:00
|
|
|
|
structure pointed [class] (A : Type) :=
|
2014-12-12 04:14:53 +00:00
|
|
|
|
(point : A)
|
|
|
|
|
|
2015-06-04 01:41:21 +00:00
|
|
|
|
structure Pointed :=
|
2016-02-15 19:40:25 +00:00
|
|
|
|
(carrier : Type)
|
2015-06-04 01:41:21 +00:00
|
|
|
|
(Point : carrier)
|
|
|
|
|
|
|
|
|
|
open Pointed
|
|
|
|
|
|
2015-09-22 16:01:55 +00:00
|
|
|
|
notation `Type*` := Pointed
|
|
|
|
|
|
2015-05-14 02:01:48 +00:00
|
|
|
|
namespace pointed
|
2015-06-04 01:41:21 +00:00
|
|
|
|
attribute Pointed.carrier [coercion]
|
2015-05-14 02:01:48 +00:00
|
|
|
|
variables {A B : Type}
|
2015-06-04 01:41:21 +00:00
|
|
|
|
|
2015-07-07 23:37:06 +00:00
|
|
|
|
definition pt [unfold 2] [H : pointed A] := point A
|
2016-02-15 19:40:25 +00:00
|
|
|
|
protected definition Mk [constructor] {A : Type} (a : A) := Pointed.mk A a
|
|
|
|
|
protected definition MK [constructor] (A : Type) (a : A) := Pointed.mk A a
|
2015-09-22 16:01:55 +00:00
|
|
|
|
protected definition mk' [constructor] (A : Type) [H : pointed A] : Type* :=
|
2016-02-15 19:40:25 +00:00
|
|
|
|
Pointed.mk A (point A)
|
2015-09-22 16:01:55 +00:00
|
|
|
|
definition pointed_carrier [instance] [constructor] (A : Type*) : pointed A :=
|
2015-06-04 01:41:21 +00:00
|
|
|
|
pointed.mk (Point A)
|
2014-12-12 04:14:53 +00:00
|
|
|
|
|
|
|
|
|
-- Any contractible type is pointed
|
2015-06-17 23:31:05 +00:00
|
|
|
|
definition pointed_of_is_contr [instance] [priority 800] [constructor]
|
|
|
|
|
(A : Type) [H : is_contr A] : pointed A :=
|
2015-05-14 02:01:48 +00:00
|
|
|
|
pointed.mk !center
|
2014-12-12 04:14:53 +00:00
|
|
|
|
|
|
|
|
|
-- A pi type with a pointed target is pointed
|
2015-06-04 01:41:21 +00:00
|
|
|
|
definition pointed_pi [instance] [constructor] (P : A → Type) [H : Πx, pointed (P x)]
|
2015-05-14 02:01:48 +00:00
|
|
|
|
: pointed (Πx, P x) :=
|
|
|
|
|
pointed.mk (λx, pt)
|
2014-12-12 04:14:53 +00:00
|
|
|
|
|
|
|
|
|
-- A sigma type of pointed components is pointed
|
2015-06-04 01:41:21 +00:00
|
|
|
|
definition pointed_sigma [instance] [constructor] (P : A → Type) [G : pointed A]
|
2015-05-14 02:01:48 +00:00
|
|
|
|
[H : pointed (P pt)] : pointed (Σx, P x) :=
|
|
|
|
|
pointed.mk ⟨pt,pt⟩
|
2014-12-12 04:14:53 +00:00
|
|
|
|
|
2015-06-04 01:41:21 +00:00
|
|
|
|
definition pointed_prod [instance] [constructor] (A B : Type) [H1 : pointed A] [H2 : pointed B]
|
2015-05-14 02:01:48 +00:00
|
|
|
|
: pointed (A × B) :=
|
|
|
|
|
pointed.mk (pt,pt)
|
2014-12-12 04:14:53 +00:00
|
|
|
|
|
2015-06-04 01:41:21 +00:00
|
|
|
|
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
|
2015-05-14 02:01:48 +00:00
|
|
|
|
pointed.mk idp
|
2014-12-12 04:14:53 +00:00
|
|
|
|
|
2015-06-04 01:41:21 +00:00
|
|
|
|
definition pointed_bool [instance] [constructor] : pointed bool :=
|
|
|
|
|
pointed.mk ff
|
2015-05-14 02:01:48 +00:00
|
|
|
|
|
2016-01-26 17:14:45 +00:00
|
|
|
|
definition Prod [constructor] (A B : Type*) : Type* :=
|
|
|
|
|
pointed.mk' (A × B)
|
|
|
|
|
|
|
|
|
|
infixr ` ×* `:35 := Prod
|
|
|
|
|
|
2015-09-22 16:01:55 +00:00
|
|
|
|
definition Bool [constructor] : Type* :=
|
2015-06-04 01:41:21 +00:00
|
|
|
|
pointed.mk' bool
|
2015-05-14 02:01:48 +00:00
|
|
|
|
|
2015-11-18 23:08:38 +00:00
|
|
|
|
definition Unit [constructor] : Type* :=
|
2016-02-15 19:40:25 +00:00
|
|
|
|
pointed.Mk unit.star
|
2015-11-18 23:08:38 +00:00
|
|
|
|
|
2015-06-04 01:41:21 +00:00
|
|
|
|
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
|
|
|
|
|
pointed.mk (f pt)
|
2015-05-14 02:01:48 +00:00
|
|
|
|
|
2015-09-22 16:01:55 +00:00
|
|
|
|
definition Loop_space [reducible] [constructor] (A : Type*) : Type* :=
|
2015-06-04 01:41:21 +00:00
|
|
|
|
pointed.mk' (point A = point A)
|
2015-05-14 02:01:48 +00:00
|
|
|
|
|
2015-11-13 22:17:02 +00:00
|
|
|
|
definition Iterated_loop_space [unfold 1] [reducible] : ℕ → Type* → Type*
|
|
|
|
|
| Iterated_loop_space 0 X := X
|
|
|
|
|
| Iterated_loop_space (n+1) X := Loop_space (Iterated_loop_space n X)
|
2015-05-14 02:01:48 +00:00
|
|
|
|
|
2015-06-04 05:09:26 +00:00
|
|
|
|
prefix `Ω`:(max+5) := Loop_space
|
2015-10-01 19:52:28 +00:00
|
|
|
|
notation `Ω[`:95 n:0 `] `:0 A:95 := Iterated_loop_space n A
|
2015-05-14 02:01:48 +00:00
|
|
|
|
|
2015-11-16 20:30:28 +00:00
|
|
|
|
definition rfln [constructor] [reducible] {A : Type*} {n : ℕ} : Ω[n] A := pt
|
|
|
|
|
definition refln [constructor] [reducible] (A : Type*) (n : ℕ) : Ω[n] A := pt
|
|
|
|
|
definition refln_eq_refl (A : Type*) (n : ℕ) : rfln = rfl :> Ω[succ n] A := rfl
|
2015-07-29 12:17:16 +00:00
|
|
|
|
|
|
|
|
|
definition iterated_loop_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type :=
|
2015-06-04 01:41:21 +00:00
|
|
|
|
Ω[n] (pointed.mk' A)
|
|
|
|
|
|
|
|
|
|
open equiv.ops
|
2015-09-22 16:01:55 +00:00
|
|
|
|
definition Pointed_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B :=
|
2015-06-04 01:41:21 +00:00
|
|
|
|
begin
|
|
|
|
|
cases A with A a, cases B with B b, esimp at *,
|
|
|
|
|
fapply apd011 @Pointed.mk,
|
|
|
|
|
{ apply ua f},
|
|
|
|
|
{ rewrite [cast_ua,p]},
|
|
|
|
|
end
|
|
|
|
|
|
2015-09-22 16:01:55 +00:00
|
|
|
|
protected definition Pointed.sigma_char.{u} : Pointed.{u} ≃ Σ(X : Type.{u}), X :=
|
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{ intro x, induction x with X x, exact ⟨X, x⟩},
|
|
|
|
|
{ intro x, induction x with X x, exact pointed.MK X x},
|
|
|
|
|
{ intro x, induction x with X x, reflexivity},
|
|
|
|
|
{ intro x, induction x with X x, reflexivity},
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
definition add_point [constructor] (A : Type) : Type* :=
|
2016-02-15 19:40:25 +00:00
|
|
|
|
pointed.Mk (none : option A)
|
2015-06-04 01:41:21 +00:00
|
|
|
|
postfix `₊`:(max+1) := add_point
|
|
|
|
|
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
|
2016-02-15 19:40:25 +00:00
|
|
|
|
|
2015-06-04 01:41:21 +00:00
|
|
|
|
end pointed
|
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
namespace pointed
|
|
|
|
|
/- properties of iterated loop space -/
|
|
|
|
|
variable (A : Type*)
|
|
|
|
|
definition loop_space_succ_eq_in (n : ℕ) : Ω[succ n] A = Ω[n] (Ω A) :=
|
|
|
|
|
begin
|
|
|
|
|
induction n with n IH,
|
|
|
|
|
{ reflexivity},
|
|
|
|
|
{ exact ap Loop_space IH}
|
|
|
|
|
end
|
2015-06-04 01:41:21 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition loop_space_add (n m : ℕ) : Ω[n] (Ω[m] A) = Ω[m+n] (A) :=
|
|
|
|
|
begin
|
|
|
|
|
induction n with n IH,
|
|
|
|
|
{ reflexivity},
|
|
|
|
|
{ exact ap Loop_space IH}
|
|
|
|
|
end
|
2015-05-14 02:01:48 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition loop_space_succ_eq_out (n : ℕ) : Ω[succ n] A = Ω(Ω[n] A) :=
|
|
|
|
|
idp
|
2015-05-14 02:01:48 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
variable {A}
|
2015-06-17 23:31:05 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
/- the equality [loop_space_succ_eq_in] preserves concatenation -/
|
|
|
|
|
theorem loop_space_succ_eq_in_concat {n : ℕ} (p q : Ω[succ (succ n)] A) :
|
|
|
|
|
transport carrier (ap Loop_space (loop_space_succ_eq_in A n)) (p ⬝ q)
|
|
|
|
|
= transport carrier (ap Loop_space (loop_space_succ_eq_in A n)) p
|
|
|
|
|
⬝ transport carrier (ap Loop_space (loop_space_succ_eq_in A n)) q :=
|
2015-06-04 01:41:21 +00:00
|
|
|
|
begin
|
2016-02-15 19:40:25 +00:00
|
|
|
|
rewrite [-+tr_compose, ↑function.compose],
|
|
|
|
|
rewrite [+@transport_eq_FlFr_D _ _ _ _ Point Point, +con.assoc], apply whisker_left,
|
|
|
|
|
rewrite [-+con.assoc], apply whisker_right, rewrite [con_inv_cancel_right, ▸*, -ap_con]
|
2015-06-04 01:41:21 +00:00
|
|
|
|
end
|
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition loop_space_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A :=
|
|
|
|
|
begin
|
|
|
|
|
intros, fapply Pointed_eq,
|
|
|
|
|
{ esimp, transitivity _,
|
|
|
|
|
apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹),
|
|
|
|
|
esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv},
|
|
|
|
|
{ esimp, apply con.left_inv}
|
|
|
|
|
end
|
2015-06-17 19:58:58 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition iterated_loop_space_loop_irrel (n : ℕ) (p : point A = point A)
|
|
|
|
|
: Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> Pointed :=
|
|
|
|
|
calc
|
|
|
|
|
Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : loop_space_succ_eq_in
|
|
|
|
|
... = Ω[n] (Ω[2] A) : loop_space_loop_irrel
|
|
|
|
|
... = Ω[2+n] A : loop_space_add
|
|
|
|
|
... = Ω[n+2] A : by rewrite [algebra.add.comm]
|
2015-06-17 19:58:58 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
end pointed open pointed
|
2015-06-17 19:58:58 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
/- pointed maps -/
|
|
|
|
|
structure pmap (A B : Type*) :=
|
|
|
|
|
(to_fun : A → B)
|
|
|
|
|
(resp_pt : to_fun (Point A) = Point B)
|
2016-01-22 14:20:30 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
namespace pointed
|
|
|
|
|
abbreviation respect_pt [unfold 3] := @pmap.resp_pt
|
|
|
|
|
notation `map₊` := pmap
|
|
|
|
|
infix ` →* `:30 := pmap
|
|
|
|
|
attribute pmap.to_fun [coercion]
|
|
|
|
|
end pointed open pointed
|
|
|
|
|
|
|
|
|
|
/- pointed homotopies -/
|
|
|
|
|
structure phomotopy {A B : Type*} (f g : A →* B) :=
|
|
|
|
|
(homotopy : f ~ g)
|
|
|
|
|
(homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f)
|
|
|
|
|
|
|
|
|
|
namespace pointed
|
|
|
|
|
variables {A B C D : Type*} {f g h : A →* B}
|
2015-06-17 19:58:58 +00:00
|
|
|
|
|
2015-10-01 19:52:28 +00:00
|
|
|
|
infix ` ~* `:50 := phomotopy
|
2015-07-07 23:37:06 +00:00
|
|
|
|
abbreviation to_homotopy_pt [unfold 5] := @phomotopy.homotopy_pt
|
|
|
|
|
abbreviation to_homotopy [coercion] [unfold 5] (p : f ~* g) : Πa, f a = g a :=
|
2015-06-17 19:58:58 +00:00
|
|
|
|
phomotopy.homotopy p
|
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
/- categorical properties of pointed maps -/
|
|
|
|
|
|
|
|
|
|
definition pid [constructor] (A : Type*) : A →* A :=
|
|
|
|
|
pmap.mk id idp
|
|
|
|
|
|
|
|
|
|
definition pcompose [constructor] (g : B →* C) (f : A →* B) : A →* C :=
|
|
|
|
|
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
|
|
|
|
|
|
|
|
|
|
infixr ` ∘* `:60 := pcompose
|
|
|
|
|
|
2015-06-17 19:58:58 +00:00
|
|
|
|
definition passoc (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
|
|
|
|
|
begin
|
2015-06-23 16:47:52 +00:00
|
|
|
|
fconstructor, intro a, reflexivity,
|
2015-06-17 19:58:58 +00:00
|
|
|
|
cases A, cases B, cases C, cases D, cases f with f pf, cases g with g pg, cases h with h ph,
|
|
|
|
|
esimp at *,
|
|
|
|
|
induction pf, induction pg, induction ph, reflexivity
|
|
|
|
|
end
|
|
|
|
|
|
2015-06-17 23:31:05 +00:00
|
|
|
|
definition pid_comp (f : A →* B) : pid B ∘* f ~* f :=
|
|
|
|
|
begin
|
2015-06-23 16:47:52 +00:00
|
|
|
|
fconstructor,
|
2015-06-17 23:31:05 +00:00
|
|
|
|
{ intro a, reflexivity},
|
2016-02-15 17:57:51 +00:00
|
|
|
|
{ reflexivity}
|
2015-06-17 23:31:05 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition comp_pid (f : A →* B) : f ∘* pid A ~* f :=
|
|
|
|
|
begin
|
2015-06-23 16:47:52 +00:00
|
|
|
|
fconstructor,
|
2015-06-17 23:31:05 +00:00
|
|
|
|
{ intro a, reflexivity},
|
|
|
|
|
{ reflexivity}
|
|
|
|
|
end
|
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
/- equivalences and equalities -/
|
|
|
|
|
|
|
|
|
|
definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
|
|
|
|
|
begin
|
|
|
|
|
cases f with f p, cases g with g q,
|
|
|
|
|
esimp at *,
|
|
|
|
|
fapply apo011 pmap.mk,
|
|
|
|
|
{ exact eq_of_homotopy r},
|
|
|
|
|
{ apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con,
|
|
|
|
|
rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,s]}
|
|
|
|
|
end
|
|
|
|
|
|
2015-09-22 16:01:55 +00:00
|
|
|
|
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
|
2015-06-04 01:41:21 +00:00
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{ intro f a, cases f with f p, exact f (some a)},
|
2015-06-23 16:47:52 +00:00
|
|
|
|
{ intro f, fconstructor,
|
2015-06-04 01:41:21 +00:00
|
|
|
|
intro a, cases a, exact pt, exact f a,
|
|
|
|
|
reflexivity},
|
|
|
|
|
{ intro f, reflexivity},
|
2015-06-17 19:58:58 +00:00
|
|
|
|
{ intro f, cases f with f p, esimp, fapply pmap_eq,
|
2015-06-04 01:41:21 +00:00
|
|
|
|
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
|
|
|
|
|
{ esimp, exact !con.left_inv⁻¹}},
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- set_option pp.notation false
|
2015-09-22 16:01:55 +00:00
|
|
|
|
-- definition pmap_equiv_right (A : Type*) (B : Type)
|
2015-06-04 01:41:21 +00:00
|
|
|
|
-- : (Σ(b : B), map₊ A (pointed.Mk b)) ≃ (A → B) :=
|
|
|
|
|
-- begin
|
|
|
|
|
-- fapply equiv.MK,
|
|
|
|
|
-- { intro u a, cases u with b f, cases f with f p, esimp at f, exact f a},
|
2015-06-17 19:58:58 +00:00
|
|
|
|
-- { intro f, refine ⟨f pt, _⟩, fapply pmap.mk,
|
2015-06-04 01:41:21 +00:00
|
|
|
|
-- intro a, esimp, exact f a,
|
|
|
|
|
-- reflexivity},
|
|
|
|
|
-- { intro f, reflexivity},
|
|
|
|
|
-- { intro u, cases u with b f, cases f with f p, esimp at *, apply sigma_eq p,
|
|
|
|
|
-- esimp, apply sorry
|
|
|
|
|
-- }
|
|
|
|
|
-- end
|
|
|
|
|
|
2015-09-22 16:01:55 +00:00
|
|
|
|
definition pmap_bool_equiv (B : Type*) : map₊ Bool B ≃ B :=
|
2015-06-04 01:41:21 +00:00
|
|
|
|
begin
|
|
|
|
|
fapply equiv.MK,
|
|
|
|
|
{ intro f, cases f with f p, exact f tt},
|
2015-06-23 16:47:52 +00:00
|
|
|
|
{ intro b, fconstructor,
|
2015-06-04 01:41:21 +00:00
|
|
|
|
intro u, cases u, exact pt, exact b,
|
|
|
|
|
reflexivity},
|
|
|
|
|
{ intro b, reflexivity},
|
2015-06-17 19:58:58 +00:00
|
|
|
|
{ intro f, cases f with f p, esimp, fapply pmap_eq,
|
2015-06-04 01:41:21 +00:00
|
|
|
|
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
|
|
|
|
|
{ esimp, exact !con.left_inv⁻¹}},
|
|
|
|
|
end
|
2015-05-14 02:01:48 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
/- instances of pointed maps -/
|
|
|
|
|
|
|
|
|
|
-- The constant pointed map between any two types
|
|
|
|
|
definition pconst [constructor] (A B : Type*) : A →* B :=
|
|
|
|
|
pmap.mk (λ a, Point B) idp
|
|
|
|
|
|
2015-11-13 22:17:02 +00:00
|
|
|
|
definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B :=
|
|
|
|
|
begin
|
|
|
|
|
fconstructor,
|
|
|
|
|
{ intro p, exact !respect_pt⁻¹ ⬝ ap f p ⬝ !respect_pt},
|
|
|
|
|
{ esimp, apply con.left_inv}
|
|
|
|
|
end
|
|
|
|
|
|
2015-07-29 12:17:16 +00:00
|
|
|
|
definition apn [unfold 3] (n : ℕ) (f : map₊ A B) : Ω[n] A →* Ω[n] B :=
|
2015-06-04 05:09:26 +00:00
|
|
|
|
begin
|
2015-11-13 22:17:02 +00:00
|
|
|
|
induction n with n IH,
|
|
|
|
|
{ exact f},
|
|
|
|
|
{ esimp [Iterated_loop_space], exact ap1 IH}
|
|
|
|
|
end
|
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B :=
|
|
|
|
|
proof pmap.mk (cast (ap Pointed.carrier p)) (by induction p; reflexivity) qed
|
2015-11-13 22:17:02 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition pinverse [constructor] {X : Type*} : Ω X →* Ω X :=
|
|
|
|
|
pmap.mk eq.inverse idp
|
2015-11-13 22:17:02 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
/- properties about these instances -/
|
2015-11-18 23:08:38 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition is_equiv_ap1 {A B : Type*} (f : A →* B) [is_equiv f] : is_equiv (ap1 f) :=
|
2015-11-18 23:08:38 +00:00
|
|
|
|
begin
|
2016-02-15 19:40:25 +00:00
|
|
|
|
induction B with B b, induction f with f pf, esimp at *, cases pf, esimp,
|
|
|
|
|
apply is_equiv.homotopy_closed (ap f),
|
|
|
|
|
intro p, exact !idp_con⁻¹
|
2015-11-18 23:08:38 +00:00
|
|
|
|
end
|
|
|
|
|
|
2015-11-13 22:17:02 +00:00
|
|
|
|
-- TODO:
|
|
|
|
|
-- definition apn_compose (n : ℕ) (g : B →* C) (f : A →* B) : apn n (g ∘* f) ~* apn n g ∘* apn n f :=
|
|
|
|
|
-- _
|
2015-06-17 23:31:05 +00:00
|
|
|
|
|
|
|
|
|
definition ap1_compose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
|
|
|
|
|
begin
|
|
|
|
|
induction B, induction C, induction g with g pg, induction f with f pf, esimp at *,
|
|
|
|
|
induction pg, induction pf,
|
2015-06-23 16:47:52 +00:00
|
|
|
|
fconstructor,
|
|
|
|
|
{ intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹},
|
2015-06-17 23:31:05 +00:00
|
|
|
|
{ reflexivity}
|
|
|
|
|
end
|
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
/- categorical properties of pointed homotopies -/
|
|
|
|
|
|
2015-06-17 23:31:05 +00:00
|
|
|
|
protected definition phomotopy.refl [refl] (f : A →* B) : f ~* f :=
|
|
|
|
|
begin
|
2015-06-23 16:47:52 +00:00
|
|
|
|
fconstructor,
|
2015-06-17 23:31:05 +00:00
|
|
|
|
{ intro a, exact idp},
|
|
|
|
|
{ apply idp_con}
|
|
|
|
|
end
|
2015-06-17 19:58:58 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
protected definition phomotopy.rfl [constructor] {A B : Type*} {f : A →* B} : f ~* f :=
|
|
|
|
|
phomotopy.refl f
|
|
|
|
|
|
2015-06-17 23:31:05 +00:00
|
|
|
|
protected definition phomotopy.trans [trans] (p : f ~* g) (q : g ~* h)
|
2015-06-17 19:58:58 +00:00
|
|
|
|
: f ~* h :=
|
|
|
|
|
begin
|
2015-06-23 16:47:52 +00:00
|
|
|
|
fconstructor,
|
2015-06-17 19:58:58 +00:00
|
|
|
|
{ intro a, exact p a ⬝ q a},
|
|
|
|
|
{ induction f, induction g, induction p with p p', induction q with q q', esimp at *,
|
|
|
|
|
induction p', induction q', esimp, apply con.assoc}
|
|
|
|
|
end
|
|
|
|
|
|
2015-06-17 23:31:05 +00:00
|
|
|
|
protected definition phomotopy.symm [symm] (p : f ~* g) : g ~* f :=
|
2015-06-17 19:58:58 +00:00
|
|
|
|
begin
|
2015-06-23 16:47:52 +00:00
|
|
|
|
fconstructor,
|
2015-06-17 19:58:58 +00:00
|
|
|
|
{ intro a, exact (p a)⁻¹},
|
|
|
|
|
{ induction f, induction p with p p', esimp at *,
|
|
|
|
|
induction p', esimp, apply inv_con_cancel_left}
|
|
|
|
|
end
|
|
|
|
|
|
2015-10-01 19:52:28 +00:00
|
|
|
|
infix ` ⬝* `:75 := phomotopy.trans
|
2015-06-17 23:31:05 +00:00
|
|
|
|
postfix `⁻¹*`:(max+1) := phomotopy.symm
|
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition phomotopy_of_eq [constructor] {A B : Type*} {f g : A →* B} (p : f = g) : f ~* g :=
|
|
|
|
|
phomotopy.mk (ap010 pmap.to_fun p) begin induction p, apply idp_con end
|
|
|
|
|
|
|
|
|
|
definition pconcat_eq [constructor] {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g = h)
|
|
|
|
|
: f ~* h :=
|
|
|
|
|
p ⬝* phomotopy_of_eq q
|
|
|
|
|
|
|
|
|
|
definition eq_pconcat [constructor] {A B : Type*} {f g h : A →* B} (p : f = g) (q : g ~* h)
|
|
|
|
|
: f ~* h :=
|
|
|
|
|
phomotopy_of_eq p ⬝* q
|
2015-06-17 19:58:58 +00:00
|
|
|
|
|
2016-02-13 05:12:13 +00:00
|
|
|
|
definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g :=
|
2015-06-17 23:31:05 +00:00
|
|
|
|
begin
|
2015-06-23 16:47:52 +00:00
|
|
|
|
fconstructor,
|
2015-06-17 23:31:05 +00:00
|
|
|
|
{ intro a, exact ap h (p a)},
|
|
|
|
|
{ induction A, induction B, induction C,
|
|
|
|
|
induction f with f pf, induction g with g pg, induction h with h ph,
|
|
|
|
|
induction p with p p', esimp at *, induction ph, induction pg, induction p', reflexivity}
|
|
|
|
|
end
|
|
|
|
|
|
2016-02-13 05:12:13 +00:00
|
|
|
|
definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h :=
|
2015-06-17 23:31:05 +00:00
|
|
|
|
begin
|
2015-06-23 16:47:52 +00:00
|
|
|
|
fconstructor,
|
2015-06-17 23:31:05 +00:00
|
|
|
|
{ intro a, exact p (h a)},
|
|
|
|
|
{ induction A, induction B, induction C,
|
|
|
|
|
induction f with f pf, induction g with g pg, induction h with h ph,
|
|
|
|
|
induction p with p p', esimp at *, induction ph, induction pg, induction p', esimp,
|
|
|
|
|
exact !idp_con⁻¹}
|
|
|
|
|
end
|
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B}
|
|
|
|
|
(q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g :=
|
|
|
|
|
pwhisker_left _ p ⬝* pwhisker_right _ q
|
2016-01-22 17:06:41 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro p, esimp, refine !idp_con ⬝ _, exact !inverse_eq_inverse2⁻¹ },
|
|
|
|
|
{ reflexivity}
|
|
|
|
|
end
|
2015-06-17 19:58:58 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition ap1_id [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro p, esimp, refine !idp_con ⬝ !ap_id},
|
|
|
|
|
{ reflexivity}
|
|
|
|
|
end
|
2015-12-10 19:37:11 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
-- TODO: finish this proof
|
|
|
|
|
/- definition ap1_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g)
|
|
|
|
|
: ap1 f ~* ap1 g :=
|
|
|
|
|
begin
|
|
|
|
|
induction p with p q, induction f with f pf, induction g with g pg, induction B with B b,
|
|
|
|
|
esimp at *, induction q, induction pg,
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ intro l, esimp, refine _ ⬝ !idp_con⁻¹, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
|
|
|
|
|
apply ap_con_eq_con_ap},
|
|
|
|
|
{ esimp, }
|
|
|
|
|
end -/
|
2015-11-21 03:32:35 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition eq_of_phomotopy (p : f ~* g) : f = g :=
|
|
|
|
|
begin
|
|
|
|
|
fapply pmap_eq,
|
|
|
|
|
{ intro a, exact p a},
|
|
|
|
|
{ exact !to_homotopy_pt⁻¹}
|
|
|
|
|
end
|
2016-01-22 14:20:30 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
definition pap {A B C D : Type*} (F : (A →* B) → (C →* D))
|
|
|
|
|
{f g : A →* B} (p : f ~* g) : F f ~* F g :=
|
|
|
|
|
phomotopy.mk (ap010 F (eq_of_phomotopy p)) begin cases eq_of_phomotopy p, apply idp_con end
|
2016-01-22 14:20:30 +00:00
|
|
|
|
|
2016-02-15 19:40:25 +00:00
|
|
|
|
infix ` ⬝*p `:75 := pconcat_eq
|
|
|
|
|
infix ` ⬝p* `:75 := eq_pconcat
|
2015-11-21 03:32:35 +00:00
|
|
|
|
|
2015-05-14 02:01:48 +00:00
|
|
|
|
end pointed
|