lean2/hott/types/trunc.hlean

871 lines
32 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Properties of trunc_index, is_trunc, trunctype, trunc, and the pointed versions of these
-/
-- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .prop_trunc
import .pointed ..function algebra.order types.nat.order
open eq sigma sigma.ops pi function equiv trunctype
is_equiv prod pointed nat is_trunc algebra sum
/- basic computation with ℕ₋₂, its operations and its order -/
namespace trunc_index
definition minus_one_le_succ (n : ℕ₋₂) : -1 ≤ n.+1 :=
succ_le_succ (minus_two_le n)
definition zero_le_of_nat (n : ) : 0 ≤ of_nat n :=
succ_le_succ !minus_one_le_succ
open decidable
protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₂), decidable (n = m)
| has_decidable_eq -2 -2 := inl rfl
| has_decidable_eq (n.+1) -2 := inr (by contradiction)
| has_decidable_eq -2 (m.+1) := inr (by contradiction)
| has_decidable_eq (n.+1) (m.+1) :=
match has_decidable_eq n m with
| inl xeqy := inl (by rewrite xeqy)
| inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney)
end
definition not_succ_le_minus_two {n : ℕ₋₂} (H : n .+1 ≤ -2) : empty :=
by cases H
protected definition le_trans {n m k : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k :=
begin
induction H2 with k H2 IH,
{ exact H1},
{ exact le.step IH}
end
definition le_of_succ_le_succ {n m : ℕ₋₂} (H : n.+1 ≤ m.+1) : n ≤ m :=
begin
cases H with m H',
{ apply le.tr_refl},
{ exact trunc_index.le_trans (le.step !le.tr_refl) H'}
end
theorem not_succ_le_self {n : ℕ₋₂} : ¬n.+1 ≤ n :=
begin
induction n with n IH: intro H,
{ exact not_succ_le_minus_two H},
{ exact IH (le_of_succ_le_succ H)}
end
protected definition le_antisymm {n m : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
begin
induction H2 with n H2 IH,
{ reflexivity},
{ exfalso, apply @not_succ_le_self n, exact trunc_index.le_trans H1 H2}
end
protected definition le_succ {n m : ℕ₋₂} (H1 : n ≤ m) : n ≤ m.+1 :=
le.step H1
protected definition self_le_succ (n : ℕ₋₂) : n ≤ n.+1 :=
le.step (trunc_index.le.tr_refl n)
-- the order is total
protected theorem le_sum_le (n m : ℕ₋₂) : n ≤ m ⊎ m ≤ n :=
begin
induction m with m IH,
{ exact inr !minus_two_le},
{ cases IH with H H,
{ exact inl (trunc_index.le_succ H)},
{ cases H with n' H,
{ exact inl !trunc_index.self_le_succ},
{ exact inr (succ_le_succ H)}}}
end
end trunc_index open trunc_index
definition linear_weak_order_trunc_index [trans_instance] [reducible] :
linear_weak_order trunc_index :=
linear_weak_order.mk le trunc_index.le.tr_refl @trunc_index.le_trans @trunc_index.le_antisymm
trunc_index.le_sum_le
namespace trunc_index
/- more theorems about truncation indices -/
definition zero_add (n : ℕ₋₂) : (0 : ℕ₋₂) + n = n :=
begin
cases n with n, reflexivity,
cases n with n, reflexivity,
induction n with n IH, reflexivity, exact ap succ IH
end
definition add_zero (n : ℕ₋₂) : n + (0 : ℕ₋₂) = n :=
by reflexivity
definition succ_add_nat (n : ℕ₋₂) (m : ) : n.+1 + m = (n + m).+1 :=
by induction m with m IH; reflexivity; exact ap succ IH
definition nat_add_succ (n : ) (m : ℕ₋₂) : n + m.+1 = (n + m).+1 :=
begin
cases m with m, reflexivity,
cases m with m, reflexivity,
induction m with m IH, reflexivity, exact ap succ IH
end
definition add_nat_succ (n : ℕ₋₂) (m : ) : n + (nat.succ m) = (n + m).+1 :=
by reflexivity
definition nat_succ_add (n : ) (m : ℕ₋₂) : (nat.succ n) + m = (n + m).+1 :=
begin
cases m with m, reflexivity,
cases m with m, reflexivity,
induction m with m IH, reflexivity, exact ap succ IH
end
definition sub_two_add_two (n : ℕ₋₂) : sub_two (add_two n) = n :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap succ IH}
end
definition add_two_sub_two (n : ) : add_two (sub_two n) = n :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap nat.succ IH}
end
definition of_nat_add_plus_two_of_nat (n m : ) : n +2+ m = of_nat (n + m + 2) :=
begin
induction m with m IH,
{ reflexivity},
{ exact ap succ IH}
end
definition of_nat_add_of_nat (n m : ) : of_nat n + of_nat m = of_nat (n + m) :=
begin
induction m with m IH,
{ reflexivity},
{ exact ap succ IH}
end
definition succ_add_plus_two (n m : ℕ₋₂) : n.+1 +2+ m = (n +2+ m).+1 :=
begin
induction m with m IH,
{ reflexivity},
{ exact ap succ IH}
end
definition add_plus_two_succ (n m : ℕ₋₂) : n +2+ m.+1 = (n +2+ m).+1 :=
idp
definition add_succ_succ (n m : ℕ₋₂) : n + m.+2 = n +2+ m :=
idp
definition succ_add_succ (n m : ℕ₋₂) : n.+1 + m.+1 = n +2+ m :=
begin
cases m with m IH,
{ reflexivity},
{ apply succ_add_plus_two}
end
definition succ_succ_add (n m : ℕ₋₂) : n.+2 + m = n +2+ m :=
begin
cases m with m IH,
{ reflexivity},
{ exact !succ_add_succ ⬝ !succ_add_plus_two}
end
definition succ_sub_two (n : ) : (nat.succ n).-2 = n.-2 .+1 := rfl
definition sub_two_succ_succ (n : ) : n.-2.+1.+1 = n := rfl
definition succ_sub_two_succ (n : ) : (nat.succ n).-2.+1 = n := rfl
definition of_nat_add_two (n : ℕ₋₂) : of_nat (add_two n) = n.+2 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition of_nat_le_of_nat {n m : } (H : n ≤ m) : (of_nat n ≤ of_nat m) :=
begin
induction H with m H IH,
{ apply le.refl},
{ exact trunc_index.le_succ IH}
end
definition sub_two_le_sub_two {n m : } (H : n ≤ m) : n.-2 ≤ m.-2 :=
begin
induction H with m H IH,
{ apply le.refl},
{ exact trunc_index.le_succ IH}
end
definition add_two_le_add_two {n m : ℕ₋₂} (H : n ≤ m) : add_two n ≤ add_two m :=
begin
induction H with m H IH,
{ reflexivity},
{ constructor, exact IH},
end
definition le_of_sub_two_le_sub_two {n m : } (H : n.-2 ≤ m.-2) : n ≤ m :=
begin
rewrite [-add_two_sub_two n, -add_two_sub_two m],
exact add_two_le_add_two H,
end
definition le_of_of_nat_le_of_nat {n m : } (H : of_nat n ≤ of_nat m) : n ≤ m :=
begin
apply le_of_sub_two_le_sub_two,
exact le_of_succ_le_succ (le_of_succ_le_succ H)
end
protected theorem succ_le_of_not_le {n m : ℕ₋₂} (H : ¬ n ≤ m) : m.+1 ≤ n :=
begin
cases (le.total n m) with H2 H2,
{ exfalso, exact H H2},
{ cases H2 with n' H2',
{ exfalso, exact H !le.refl},
{ exact succ_le_succ H2'}}
end
definition trunc_index.decidable_le [instance] : Π(n m : ℕ₋₂), decidable (n ≤ m) :=
begin
intro n, induction n with n IH: intro m,
{ left, apply minus_two_le},
cases m with m,
{ right, apply not_succ_le_minus_two},
cases IH m with H H,
{ left, apply succ_le_succ H},
right, intro H2, apply H, exact le_of_succ_le_succ H2
end
end trunc_index open trunc_index
namespace is_trunc
variables {A B : Type} {n : ℕ₋₂}
/- closure properties of truncatedness -/
theorem is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B]
(Hn : -1 ≤ n) : is_trunc n A :=
begin
induction n with n,
{exfalso, exact not_succ_le_minus_two Hn},
{apply is_trunc_succ_intro, intro a a',
fapply @is_trunc_is_equiv_closed_rev _ _ n (ap f)}
end
theorem is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f]
(n : ℕ₋₂) [HA : is_trunc n A] : is_trunc n B :=
begin
revert A B f Hf HA,
induction n with n IH,
{ intro A B f Hf HA, induction Hf with g ε, fapply is_contr.mk,
{ exact f (center A)},
{ intro b, apply concat,
{ apply (ap f), exact (center_eq (g b))},
{ apply ε}}},
{ intro A B f Hf HA, induction Hf with g ε,
apply is_trunc_succ_intro, intro b b',
fapply (IH (g b = g b')),
{ intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')},
{ apply (is_retraction.mk (ap g)),
{ intro p, induction p, {rewrite [↑ap, con.left_inv]}}},
{ apply is_trunc_eq}}
end
definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) :=
λf f', !is_equiv_ap_to_fun
/- theorems about trunctype -/
protected definition trunctype.sigma_char.{l} [constructor] (n : ℕ₋₂) :
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
begin
fapply equiv.MK,
{ intro A, exact (⟨carrier A, struct A⟩)},
{ intro S, exact (trunctype.mk S.1 S.2)},
{ intro S, induction S with S1 S2, reflexivity},
{ intro A, induction A with A1 A2, reflexivity},
end
definition trunctype_eq_equiv [constructor] (n : ℕ₋₂) (A B : n-Type) :
(A = B) ≃ (carrier A = carrier B) :=
calc
(A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B)
: eq_equiv_fn_eq_of_equiv
... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1)
: equiv.symm (!equiv_subtype)
... ≃ (carrier A = carrier B) : equiv.refl
theorem is_trunc_trunctype [instance] (n : ℕ₋₂) : is_trunc n.+1 (n-Type) :=
begin
apply is_trunc_succ_intro, intro X Y,
fapply is_trunc_equiv_closed_rev, { apply trunctype_eq_equiv},
fapply is_trunc_equiv_closed_rev, { apply eq_equiv_equiv},
induction n,
{ apply @is_contr_of_inhabited_prop,
{ apply is_trunc_is_embedding_closed,
{ apply is_embedding_to_fun} ,
{ reflexivity}},
{ apply equiv_of_is_contr_of_is_contr}},
{ apply is_trunc_is_embedding_closed,
{ apply is_embedding_to_fun},
{ apply minus_one_le_succ}}
end
/- univalence for truncated types -/
definition teq_equiv_equiv {n : ℕ₋₂} {A B : n-Type} : (A = B) ≃ (A ≃ B) :=
trunctype_eq_equiv n A B ⬝e eq_equiv_equiv A B
definition tua {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : A = B :=
(trunctype_eq_equiv n A B)⁻¹ᶠ (ua f)
definition tua_refl {n : ℕ₋₂} (A : n-Type) : tua (@erfl A) = idp :=
begin
refine ap (trunctype_eq_equiv n A A)⁻¹ᶠ (ua_refl A) ⬝ _,
esimp, refine ap (eq_of_fn_eq_fn _) _ ⬝ !eq_of_fn_eq_fn'_idp ,
esimp, apply ap (dpair_eq_dpair idp), apply is_prop.elim
end
definition tua_trans {n : ℕ₋₂} {A B C : n-Type} (f : A ≃ B) (g : B ≃ C)
: tua (f ⬝e g) = tua f ⬝ tua g :=
begin
refine ap (trunctype_eq_equiv n A C)⁻¹ᶠ (ua_trans f g) ⬝ _,
esimp, refine ap (eq_of_fn_eq_fn _) _ ⬝ !eq_of_fn_eq_fn'_con,
refine _ ⬝ !dpair_eq_dpair_con,
apply ap (dpair_eq_dpair _), apply is_prop.elim
end
definition tua_symm {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : tua f⁻¹ᵉ = (tua f)⁻¹ :=
begin
apply eq_inv_of_con_eq_idp',
refine !tua_trans⁻¹ ⬝ _,
refine ap tua _ ⬝ !tua_refl,
apply equiv_eq, exact to_right_inv f
end
definition tcast [unfold 4] {n : ℕ₋₂} {A B : n-Type} (p : A = B) (a : A) : B :=
cast (ap trunctype.carrier p) a
definition ptcast [constructor] {n : ℕ₋₂} {A B : n-Type*} (p : A = B) : A →* B :=
pcast (ap ptrunctype.to_pType p)
theorem tcast_tua_fn {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : tcast (tua f) = to_fun f :=
begin
cases A with A HA, cases B with B HB, esimp at *,
induction f using rec_on_ua_idp, esimp,
have HA = HB, from !is_prop.elim, cases this,
exact ap tcast !tua_refl
end
/- theorems about decidable equality and axiom K -/
theorem is_set_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_set A :=
is_set.mk _ (λa b p q, eq.rec K q p)
theorem is_set_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u})
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) : is_set A :=
is_set_of_axiom_K
(λa p,
2016-03-19 14:38:05 +00:00
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apdt,
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
= imp (transport (λx, R a x) p r), from
to_fun (equiv.symm !heq_pi) H2,
have H4 : imp (refl a) ⬝ p = imp (refl a), from
calc
imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_eq_r
... = imp (transport (λx, R a x) p (refl a)) : H3
... = imp (refl a) : is_prop.elim,
cancel_left (imp (refl a)) H4)
definition relation_equiv_eq {A : Type} (R : A → A → Type)
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b :=
have is_set A, from is_set_of_relation R mere refl @imp,
equiv_of_is_prop imp (λp, p ▸ refl a)
local attribute not [reducible]
theorem is_set_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b)
: is_set A :=
is_set_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H
section
open decidable
--this is proven differently in init.hedberg
theorem is_set_of_decidable_eq (A : Type) [H : decidable_eq A] : is_set A :=
is_set_of_double_neg_elim (λa b, by_contradiction)
end
theorem is_trunc_of_axiom_K_of_le {A : Type} {n : ℕ₋₂} (H : -1 ≤ n)
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_le H (λp, eq.rec_on p !K))
theorem is_trunc_succ_of_is_trunc_loop (Hn : -1 ≤ n) (Hp : Π(a : A), is_trunc n (a = a))
: is_trunc (n.+1) A :=
begin
apply is_trunc_succ_intro, intros a a',
apply is_trunc_of_imp_is_trunc_of_le Hn, intro p,
induction p, apply Hp
end
theorem is_prop_iff_is_contr {A : Type} (a : A) :
is_prop A ↔ is_contr A :=
iff.intro (λH, is_contr.mk a (is_prop.elim a)) _
theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) :
is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) :=
iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn)
-- use loopn in name
theorem is_trunc_iff_is_contr_loop_succ (n : ) (A : Type)
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](pointed.Mk a)) :=
begin
revert A, induction n with n IH,
{ intro A, esimp [iterated_ploop_space], transitivity _,
{ apply is_trunc_succ_iff_is_trunc_loop, apply le.refl},
{ apply pi_iff_pi, intro a, esimp, apply is_prop_iff_is_contr, reflexivity}},
{ intro A, esimp [iterated_ploop_space],
transitivity _,
{ apply @is_trunc_succ_iff_is_trunc_loop @n, esimp, apply minus_one_le_succ},
apply pi_iff_pi, intro a, transitivity _, apply IH,
transitivity _, apply pi_iff_pi, intro p,
rewrite [iterated_loop_space_loop_irrel n p], apply iff.refl, esimp,
apply imp_iff, reflexivity}
end
-- use loopn in name
theorem is_trunc_iff_is_contr_loop (n : ) (A : Type)
: is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) :=
begin
induction n with n,
{ esimp [sub_two,iterated_ploop_space], apply iff.intro,
intro H a, exact is_contr_of_inhabited_prop a,
intro H, apply is_prop_of_imp_is_contr, exact H},
{ apply is_trunc_iff_is_contr_loop_succ},
end
-- rename to is_contr_loopn_of_is_trunc
theorem is_contr_loop_of_is_trunc (n : ) (A : Type*) [H : is_trunc (n.-2.+1) A] :
is_contr (Ω[n] A) :=
begin
induction A,
apply iff.mp !is_trunc_iff_is_contr_loop H
end
-- rename to is_trunc_loopn_of_is_trunc
2016-03-01 04:37:03 +00:00
theorem is_trunc_loop_of_is_trunc (n : ℕ₋₂) (k : ) (A : Type*) [H : is_trunc n A] :
is_trunc n (Ω[k] A) :=
begin
induction k with k IH,
{ exact H},
{ apply is_trunc_eq}
end
definition is_trunc_loopn (k : ℕ₋₂) (n : ) (A : Type*) [H : is_trunc (k+n) A]
: is_trunc k (Ω[n] A) :=
begin
revert k H, induction n with n IH: intro k H, exact _,
apply is_trunc_eq, apply IH, rewrite [succ_add_nat, add_nat_succ at H], exact H
end
definition is_set_loopn (n : ) (A : Type*) [is_trunc n A] : is_set (Ω[n] A) :=
have is_trunc (0+[ℕ₋₂]n) A, by rewrite [trunc_index.zero_add]; exact _,
is_trunc_loopn 0 n A
end is_trunc open is_trunc
namespace trunc
universe variable u
variables {n : ℕ₋₂} {A : Type.{u}} {B : Type} {a₁ a₂ a₃ a₄ : A}
definition trunc_functor2 [unfold 6 7] {n : ℕ₋₂} {A B C : Type} (f : A → B → C)
(x : trunc n A) (y : trunc n B) : trunc n C :=
by induction x with a; induction y with b; exact tr (f a b)
definition tconcat [unfold 6 7] (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) :
trunc n (a₁ = a₃) :=
trunc_functor2 concat p q
definition tinverse [unfold 5] (p : trunc n (a₁ = a₂)) : trunc n (a₂ = a₁) :=
trunc_functor _ inverse p
definition tidp [reducible] [constructor] : trunc n (a₁ = a₁) :=
tr idp
definition tassoc (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃))
(r : trunc n (a₃ = a₄)) : tconcat (tconcat p q) r = tconcat p (tconcat q r) :=
by induction p; induction q; induction r; exact ap tr !con.assoc
definition tidp_tcon (p : trunc n (a₁ = a₂)) : tconcat tidp p = p :=
by induction p; exact ap tr !idp_con
definition tcon_tidp (p : trunc n (a₁ = a₂)) : tconcat p tidp = p :=
by induction p; reflexivity
definition left_tinv (p : trunc n (a₁ = a₂)) : tconcat (tinverse p) p = tidp :=
by induction p; exact ap tr !con.left_inv
definition right_tinv (p : trunc n (a₁ = a₂)) : tconcat p (tinverse p) = tidp :=
by induction p; exact ap tr !con.right_inv
definition tap [unfold 7] (f : A → B) (p : trunc n (a₁ = a₂)) : trunc n (f a₁ = f a₂) :=
trunc_functor _ (ap f) p
definition tap_tidp (f : A → B) : tap f (@tidp n A a₁) = tidp := idp
definition tap_tcon (f : A → B) (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) :
tap f (tconcat p q) = tconcat (tap f p) (tap f q) :=
by induction p; induction q; exact ap tr !ap_con
/- characterization of equality in truncated types -/
protected definition code [unfold 3 4] (n : ℕ₋₂) (aa aa' : trunc n.+1 A) : trunctype.{u} n :=
by induction aa with a; induction aa' with a'; exact trunctype.mk' n (trunc n (a = a'))
protected definition encode [unfold 3 5] {n : ℕ₋₂} {aa aa' : trunc n.+1 A}
: aa = aa' → trunc.code n aa aa' :=
begin
intro p, induction p, induction aa with a, esimp, exact (tr idp)
end
protected definition decode [unfold 3 4 5] {n : ℕ₋₂} (aa aa' : trunc n.+1 A) :
trunc.code n aa aa' → aa = aa' :=
begin
induction aa' with a', induction aa with a,
esimp [trunc.code, trunc.rec_on], intro x,
induction x with p, exact ap tr p,
end
definition trunc_eq_equiv [constructor] (n : ℕ₋₂) (aa aa' : trunc n.+1 A)
: aa = aa' ≃ trunc.code n aa aa' :=
begin
fapply equiv.MK,
{ apply trunc.encode},
{ apply trunc.decode},
{ eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
intro a a' x, esimp [trunc.code, trunc.rec_on] at x,
refine (@trunc.rec_on n _ _ x _ _),
intro x, apply is_trunc_eq,
intro p, induction p, reflexivity},
{ intro p, induction p, apply (trunc.rec_on aa), intro a, exact idp},
end
definition tr_eq_tr_equiv [constructor] (n : ℕ₋₂) (a a' : A)
: (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') :=
!trunc_eq_equiv
definition code_mul {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A}
(g : trunc.code n aa₁ aa₂) (h : trunc.code n aa₂ aa₃) : trunc.code n aa₁ aa₃ :=
begin
induction aa₁ with a₁, induction aa₂ with a₂, induction aa₃ with a₃,
esimp at *, apply tconcat g h,
end
/- encode preserves concatenation -/
definition encode_con' {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A} (p : aa₁ = aa₂) (q : aa₂ = aa₃)
: trunc.encode (p ⬝ q) = code_mul (trunc.encode p) (trunc.encode q) :=
begin
induction p, induction q, induction aa₁ with a₁, reflexivity
end
definition encode_con {n : ℕ₋₂} {a₁ a₂ a₃ : A} (p : tr a₁ = tr a₂ :> trunc (n.+1) A)
(q : tr a₂ = tr a₃ :> trunc (n.+1) A)
: trunc.encode (p ⬝ q) = tconcat (trunc.encode p) (trunc.encode q) :=
encode_con' p q
/- the principle of unique choice -/
definition unique_choice {P : A → Type} [H : Πa, is_prop (P a)] (f : Πa, ∥ P a ∥) (a : A)
: P a :=
!trunc_equiv (f a)
/- transport over a truncated family -/
definition trunc_transport {a a' : A} {P : A → Type} (p : a = a') (n : ℕ₋₂) (x : P a)
: transport (λa, trunc n (P a)) p (tr x) = tr (p ▸ x) :=
by induction p; reflexivity
/- pathover over a truncated family -/
definition trunc_pathover {A : Type} {B : A → Type} {n : ℕ₋₂} {a a' : A} {p : a = a'}
{b : B a} {b' : B a'} (q : b =[p] b') : @tr n _ b =[p] @tr n _ b' :=
by induction q; constructor
/- truncations preserve truncatedness -/
definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type)
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (trunc m A) :=
begin
revert A m H, eapply (trunc_index.rec_on n),
{ clear n, intro A m H, apply is_contr_equiv_closed,
{ apply equiv.symm, apply trunc_equiv, apply (@is_trunc_of_le _ -2), apply minus_two_le} },
{ clear n, intro n IH A m H, induction m with m,
{ apply (@is_trunc_of_le _ -2), apply minus_two_le},
{ apply is_trunc_succ_intro, intro aa aa',
apply (@trunc.rec_on _ _ _ aa (λy, !is_trunc_succ_of_is_prop)),
eapply (@trunc.rec_on _ _ _ aa' (λy, !is_trunc_succ_of_is_prop)),
intro a a', apply (is_trunc_equiv_closed_rev),
{ apply tr_eq_tr_equiv},
{ exact (IH _ _ _)}}}
end
/- equivalences between truncated types (see also hit.trunc) -/
definition trunc_trunc_equiv_left [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m)
: trunc n (trunc m A) ≃ trunc n A :=
begin
note H2 := is_trunc_of_le (trunc n A) H,
fapply equiv.MK,
{ intro x, induction x with x, induction x with x, exact tr x},
{ intro x, induction x with x, exact tr (tr x)},
{ intro x, induction x with x, reflexivity},
{ intro x, induction x with x, induction x with x, reflexivity}
end
definition trunc_trunc_equiv_right [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m)
: trunc m (trunc n A) ≃ trunc n A :=
begin
apply trunc_equiv,
exact is_trunc_of_le _ H,
end
definition trunc_equiv_trunc_of_le {n m : ℕ₋₂} {A B : Type} (H : n ≤ m)
(f : trunc m A ≃ trunc m B) : trunc n A ≃ trunc n B :=
(trunc_trunc_equiv_left A H)⁻¹ᵉ ⬝e trunc_equiv_trunc n f ⬝e trunc_trunc_equiv_left B H
definition trunc_trunc_equiv_trunc_trunc [constructor] (n m : ℕ₋₂) (A : Type)
: trunc n (trunc m A) ≃ trunc m (trunc n A) :=
begin
fapply equiv.MK: intro x; induction x with x; induction x with x,
{ exact tr (tr x)},
{ exact tr (tr x)},
{ reflexivity},
{ reflexivity}
end
theorem is_trunc_trunc_of_le (A : Type)
(n : ℕ₋₂) {m k : ℕ₋₂} (H : m ≤ k) [is_trunc n (trunc k A)] : is_trunc n (trunc m A) :=
begin
apply is_trunc_equiv_closed,
{ apply trunc_trunc_equiv_left, exact H},
end
definition trunc_functor_homotopy [unfold 7] {X Y : Type} (n : ℕ₋₂) {f g : X → Y}
(p : f ~ g) (x : trunc n X) : trunc_functor n f x = trunc_functor n g x :=
begin
induction x with x, esimp, exact ap tr (p x)
end
definition trunc_functor_homotopy_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k) :
to_fun (trunc_trunc_equiv_left B H) ∘
trunc_functor n (trunc_functor k f) ∘
to_fun (trunc_trunc_equiv_left A H)⁻¹ᵉ ~
trunc_functor n f :=
begin
intro x, induction x with x, reflexivity
end
definition is_equiv_trunc_functor_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k)
[is_equiv (trunc_functor k f)] : is_equiv (trunc_functor n f) :=
is_equiv_of_equiv_of_homotopy (trunc_equiv_trunc_of_le H (equiv.mk (trunc_functor k f) _))
(trunc_functor_homotopy_of_le f H)
/- trunc_functor preserves surjectivity -/
definition is_surjective_trunc_functor {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_surjective f]
: is_surjective (trunc_functor n f) :=
begin
cases n with n: intro b,
{ exact tr (fiber.mk !center !is_prop.elim)},
{ refine @trunc.rec _ _ _ _ _ b, {intro x, exact is_trunc_of_le _ !minus_one_le_succ},
clear b, intro b, induction H b with a p,
exact tr (fiber.mk (tr a) (ap tr p))}
end
/- truncation of pointed types and its functorial action -/
definition ptrunc [constructor] (n : ℕ₋₂) (X : Type*) : n-Type* :=
ptrunctype.mk (trunc n X) _ (tr pt)
definition ptrunc_functor [constructor] {X Y : Type*} (n : ℕ₋₂) (f : X →* Y)
: ptrunc n X →* ptrunc n Y :=
pmap.mk (trunc_functor n f) (ap tr (respect_pt f))
definition ptrunc_pequiv_ptrunc [constructor] (n : ℕ₋₂) {X Y : Type*} (H : X ≃* Y)
2016-03-01 04:37:03 +00:00
: ptrunc n X ≃* ptrunc n Y :=
pequiv_of_equiv (trunc_equiv_trunc n H) (ap tr (respect_pt H))
definition ptrunc_pequiv [constructor] (n : ℕ₋₂) (X : Type*) (H : is_trunc n X)
: ptrunc n X ≃* X :=
pequiv_of_equiv (trunc_equiv n X) idp
definition ptrunc_ptrunc_pequiv_left [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
: ptrunc n (ptrunc m A) ≃* ptrunc n A :=
pequiv_of_equiv (trunc_trunc_equiv_left A H) idp
definition ptrunc_ptrunc_pequiv_right [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
: ptrunc m (ptrunc n A) ≃* ptrunc n A :=
pequiv_of_equiv (trunc_trunc_equiv_right A H) idp
definition ptrunc_pequiv_ptrunc_of_le {n m : ℕ₋₂} {A B : Type*} (H : n ≤ m)
(f : ptrunc m A ≃* ptrunc m B) : ptrunc n A ≃* ptrunc n B :=
(ptrunc_ptrunc_pequiv_left A H)⁻¹ᵉ* ⬝e*
ptrunc_pequiv_ptrunc n f ⬝e*
ptrunc_ptrunc_pequiv_left B H
definition ptrunc_ptrunc_pequiv_ptrunc_ptrunc [constructor] (n m : ℕ₋₂) (A : Type*)
: ptrunc n (ptrunc m A) ≃ ptrunc m (ptrunc n A) :=
pequiv_of_equiv (trunc_trunc_equiv_trunc_trunc n m A) idp
definition loop_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A : Type*) :
Ω (ptrunc (n+1) A) ≃* ptrunc n (Ω A) :=
pequiv_of_equiv !tr_eq_tr_equiv idp
definition loop_ptrunc_pequiv_con {n : ℕ₋₂} {A : Type*} (p q : Ω (ptrunc (n+1) A)) :
loop_ptrunc_pequiv n A (p ⬝ q) =
tconcat (loop_ptrunc_pequiv n A p) (loop_ptrunc_pequiv n A q) :=
encode_con p q
definition iterated_loop_ptrunc_pequiv (n : ℕ₋₂) (k : ) (A : Type*) :
Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) :=
begin
revert n, induction k with k IH: intro n,
{ reflexivity},
{ refine _ ⬝e* loop_ptrunc_pequiv n (Ω[k] A),
rewrite [iterated_ploop_space_succ], apply loop_pequiv_loop,
refine _ ⬝e* IH (n.+1),
rewrite succ_add_nat}
end
definition iterated_loop_ptrunc_pequiv_con {n : ℕ₋₂} {k : } {A : Type*}
(p q : Ω[succ k] (ptrunc (n+succ k) A)) :
iterated_loop_ptrunc_pequiv n (succ k) A (p ⬝ q) =
tconcat (iterated_loop_ptrunc_pequiv n (succ k) A p)
(iterated_loop_ptrunc_pequiv n (succ k) A q) :=
begin
refine _ ⬝ loop_ptrunc_pequiv_con _ _,
exact ap !loop_ptrunc_pequiv !loop_pequiv_loop_con
end
definition iterated_loop_ptrunc_pequiv_inv_con {n : ℕ₋₂} {k : } {A : Type*}
(p q : ptrunc n (Ω[succ k] A)) :
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* (tconcat p q) =
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* p ⬝
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* q :=
equiv.inv_preserve_binary (iterated_loop_ptrunc_pequiv n (succ k) A) concat tconcat
(@iterated_loop_ptrunc_pequiv_con n k A) p q
2016-03-01 04:37:03 +00:00
definition ptrunc_functor_pcompose [constructor] {X Y Z : Type*} (n : ℕ₋₂) (g : Y →* Z)
(f : X →* Y) : ptrunc_functor n (g ∘* f) ~* ptrunc_functor n g ∘* ptrunc_functor n f :=
begin
fapply phomotopy.mk,
{ apply trunc_functor_compose},
{ esimp, refine !idp_con ⬝ _, refine whisker_right !ap_compose'⁻¹ᵖ _ ⬝ _,
esimp, refine whisker_right (ap_compose' tr g _) _ ⬝ _, exact !ap_con⁻¹},
end
definition ptrunc_functor_pid [constructor] (X : Type*) (n : ℕ₋₂) :
ptrunc_functor n (pid X) ~* pid (ptrunc n X) :=
begin
fapply phomotopy.mk,
{ apply trunc_functor_id},
{ reflexivity},
end
definition ptrunc_functor_pcast [constructor] {X Y : Type*} (n : ℕ₋₂) (p : X = Y) :
ptrunc_functor n (pcast p) ~* pcast (ap (ptrunc n) p) :=
begin
fapply phomotopy.mk,
{ intro x, esimp, refine !trunc_functor_cast ⬝ _, refine ap010 cast _ x,
refine !ap_compose'⁻¹ ⬝ !ap_compose'},
{ induction p, reflexivity},
end
definition ptrunc_functor_phomotopy [constructor] {X Y : Type*} (n : ℕ₋₂) {f g : X →* Y}
(p : f ~* g) : ptrunc_functor n f ~* ptrunc_functor n g :=
begin
fapply phomotopy.mk,
{ exact trunc_functor_homotopy n p},
{ esimp, refine !ap_con⁻¹ ⬝ _, exact ap02 tr !to_homotopy_pt},
end
definition pcast_ptrunc [constructor] (n : ℕ₋₂) {A B : Type*} (p : A = B) :
pcast (ap (ptrunc n) p) ~* ptrunc_functor n (pcast p) :=
begin
fapply phomotopy.mk,
{ intro a, induction p, esimp, exact !trunc_functor_id⁻¹},
{ induction p, reflexivity}
end
end trunc open trunc
/- The truncated encode-decode method -/
namespace eq
definition truncated_encode {k : ℕ₋₂} {A : Type} {a₀ a : A} {code : A → Type}
[Πa, is_trunc k (code a)] (c₀ : code a₀) (p : trunc k (a₀ = a)) : code a :=
begin
induction p with p,
exact transport code p c₀
end
definition truncated_encode_decode_method {k : ℕ₋₂} {A : Type} (a₀ a : A) (code : A → Type)
[Πa, is_trunc k (code a)] (c₀ : code a₀)
(decode : Π(a : A) (c : code a), trunc k (a₀ = a))
(encode_decode : Π(a : A) (c : code a), truncated_encode c₀ (decode a c) = c)
(decode_encode : decode a₀ c₀ = tr idp) : trunc k (a₀ = a) ≃ code a :=
begin
fapply equiv.MK,
{ exact truncated_encode c₀},
{ apply decode},
{ intro c, apply encode_decode},
{ intro p, induction p with p, induction p, exact decode_encode},
end
end eq
/- some consequences for properties about functions (surjectivity etc.) -/
namespace function
variables {A B : Type}
definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f :=
λb, begin esimp, apply center, apply is_trunc_trunc_of_is_trunc end
definition is_equiv_equiv_is_embedding_times_is_surjective [constructor] (f : A → B)
: is_equiv f ≃ (is_embedding f × is_surjective f) :=
equiv_of_is_prop (λH, (_, _))
(λP, prod.rec_on P (λH₁ H₂, !is_equiv_of_is_surjective_of_is_embedding))
/-
Theorem 8.8.1:
A function is an equivalence if it's an embedding and it's action on sets is an surjection
-/
definition is_equiv_of_is_surjective_trunc_of_is_embedding {A B : Type} (f : A → B)
[H : is_embedding f] [H' : is_surjective (trunc_functor 0 f)] : is_equiv f :=
have is_surjective f,
begin
intro b,
induction H' (tr b) with a p,
induction a with a, esimp at p,
induction (tr_eq_tr_equiv _ _ _ p) with q,
exact image.mk a q
end,
is_equiv_of_is_surjective_of_is_embedding f
/-
Corollary 8.8.2:
A function f is an equivalence if Ωf and trunc_functor 0 f are equivalences
-/
definition is_equiv_of_is_equiv_ap1_of_is_equiv_trunc {A B : Type} (f : A → B)
[H : Πa, is_equiv (ap1 (pmap_of_map f a))] [H' : is_equiv (trunc_functor 0 f)] :
is_equiv f :=
have is_embedding f,
begin
intro a a',
apply is_equiv_of_imp_is_equiv,
intro p,
note q := ap (@tr 0 _) p,
note r := @(eq_of_fn_eq_fn' (trunc_functor 0 f)) _ (tr a) (tr a') q,
induction (tr_eq_tr_equiv _ _ _ r) with s,
induction s,
apply is_equiv.homotopy_closed (ap1 (pmap_of_map f a)),
intro p, apply idp_con
end,
is_equiv_of_is_surjective_trunc_of_is_embedding f
-- Whitehead's principle itself is in homotopy.homotopy_group, since it needs the definition of
-- a homotopy group.
end function