lean2/library/algebra/binary.lean

85 lines
3.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.binary
Authors: Leonardo de Moura, Jeremy Avigad
General properties of binary operations.
-/
import algebra.function
open eq.ops function
namespace binary
section
variable {A : Type}
variables (op₁ : A → A → A) (inv : A → A) (one : A)
local notation a * b := op₁ a b
local notation a ⁻¹ := inv a
local notation 1 := one
definition commutative [reducible] := ∀a b, a * b = b * a
definition associative [reducible] := ∀a b c, (a * b) * c = a * (b * c)
definition left_identity [reducible] := ∀a, 1 * a = a
definition right_identity [reducible] := ∀a, a * 1 = a
definition left_inverse [reducible] := ∀a, a⁻¹ * a = 1
definition right_inverse [reducible] := ∀a, a * a⁻¹ = 1
definition left_cancelative [reducible] := ∀a b c, a * b = a * c → b = c
definition right_cancelative [reducible] := ∀a b c, a * b = c * b → a = c
definition inv_op_cancel_left [reducible] := ∀a b, a⁻¹ * (a * b) = b
definition op_inv_cancel_left [reducible] := ∀a b, a * (a⁻¹ * b) = b
definition inv_op_cancel_right [reducible] := ∀a b, a * b⁻¹ * b = a
definition op_inv_cancel_right [reducible] := ∀a b, a * b * b⁻¹ = a
variable (op₂ : A → A → A)
local notation a + b := op₂ a b
definition left_distributive [reducible] := ∀a b c, a * (b + c) = a * b + a * c
definition right_distributive [reducible] := ∀a b c, (a + b) * c = a * c + b * c
definition right_commutative [reducible] {B : Type} (f : B → A → B) := ∀ b a₁ a₂, f (f b a₁) a₂ = f (f b a₂) a₁
definition left_commutative [reducible] {B : Type} (f : A → B → B) := ∀ a₁ a₂ b, f a₁ (f a₂ b) = f a₂ (f a₁ b)
end
context
variable {A : Type}
variable {f : A → A → A}
variable H_comm : commutative f
variable H_assoc : associative f
infixl `*` := f
theorem left_comm : left_commutative f :=
take a b c, calc
a*(b*c) = (a*b)*c : H_assoc
... = (b*a)*c : H_comm
... = b*(a*c) : H_assoc
theorem right_comm : right_commutative f :=
take a b c, calc
(a*b)*c = a*(b*c) : H_assoc
... = a*(c*b) : H_comm
... = (a*c)*b : H_assoc
end
context
variable {A : Type}
variable {f : A → A → A}
variable H_assoc : associative f
infixl `*` := f
theorem assoc4helper (a b c d) : (a*b)*(c*d) = a*((b*c)*d) :=
calc
(a*b)*(c*d) = a*(b*(c*d)) : H_assoc
... = a*((b*c)*d) : H_assoc
end
definition right_commutative_compose_right [reducible]
{A B : Type} (f : A → A → A) (g : B → A) (rcomm : right_commutative f) : right_commutative (compose_right f g) :=
λ a b₁ b₂, !rcomm
definition left_commutative_compose_left [reducible]
{A B : Type} (f : A → A → A) (g : B → A) (lcomm : left_commutative f) : left_commutative (compose_left f g) :=
λ a b₁ b₂, !lcomm
end binary