lean2/library/theories/analysis/real_limit.lean

636 lines
24 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Robert Y. Lewis
Instantiates the reals as a Banach space.
-/
import .metric_space data.real.complete data.set .normed_space
open real classical analysis nat
noncomputable theory
/- sup and inf -/
-- Expresses completeness, sup, and inf in a manner that is less constructive, but more convenient,
-- than the way it is done in data.real.complete.
-- Issue: real.sup and real.inf conflict with sup and inf in lattice.
-- Perhaps put algebra sup and inf into a namespace?
namespace real
open set
private definition exists_is_sup {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
∃ y, is_sup X y :=
let x := some (and.left H), b := some (and.right H) in
exists_is_sup_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
private definition sup_aux {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :=
some (exists_is_sup H)
private definition sup_aux_spec {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
is_sup X (sup_aux H) :=
some_spec (exists_is_sup H)
definition sup (X : set ) : :=
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b) then sup_aux H else 0
proposition le_sup {x : } {X : set } (Hx : x ∈ X) {b : } (Hb : ∀ x, x ∈ X → x ≤ b) :
x ≤ sup X :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
from and.intro (exists.intro x Hx) (exists.intro b Hb),
by+ rewrite [↑sup, dif_pos H]; exact and.left (sup_aux_spec H) x Hx
proposition sup_le {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → x ≤ b) :
sup X ≤ b :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
from and.intro HX (exists.intro b Hb),
by+ rewrite [↑sup, dif_pos H]; exact and.right (sup_aux_spec H) b Hb
proposition exists_mem_and_lt_of_lt_sup {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : b < sup X) :
∃ x, x ∈ X ∧ b < x :=
have ¬ ∀ x, x ∈ X → x ≤ b, from assume H, not_le_of_gt Hb (sup_le HX H),
obtain x (Hx : ¬ (x ∈ X → x ≤ b)), from exists_not_of_not_forall this,
exists.intro x
(have x ∈ X ∧ ¬ x ≤ b, by rewrite [-not_implies_iff_and_not]; apply Hx,
and.intro (and.left this) (lt_of_not_ge (and.right this)))
private definition exists_is_inf {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
∃ y, is_inf X y :=
let x := some (and.left H), b := some (and.right H) in
exists_is_inf_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
private definition inf_aux {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :=
some (exists_is_inf H)
private definition inf_aux_spec {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
is_inf X (inf_aux H) :=
some_spec (exists_is_inf H)
definition inf (X : set ) : :=
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x) then inf_aux H else 0
proposition inf_le {x : } {X : set } (Hx : x ∈ X) {b : } (Hb : ∀ x, x ∈ X → b ≤ x) :
inf X ≤ x :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
from and.intro (exists.intro x Hx) (exists.intro b Hb),
by+ rewrite [↑inf, dif_pos H]; exact and.left (inf_aux_spec H) x Hx
proposition le_inf {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → b ≤ x) :
b ≤ inf X :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
from and.intro HX (exists.intro b Hb),
by+ rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb
proposition exists_mem_and_lt_of_inf_lt {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : inf X < b) :
∃ x, x ∈ X ∧ x < b :=
have ¬ ∀ x, x ∈ X → b ≤ x, from assume H, not_le_of_gt Hb (le_inf HX H),
obtain x (Hx : ¬ (x ∈ X → b ≤ x)), from exists_not_of_not_forall this,
exists.intro x
(have x ∈ X ∧ ¬ b ≤ x, by rewrite [-not_implies_iff_and_not]; apply Hx,
and.intro (and.left this) (lt_of_not_ge (and.right this)))
section
local attribute mem [quasireducible]
-- TODO: is there a better place to put this?
proposition image_neg_eq (X : set ) : (λ x, -x) ' X = {x | -x ∈ X} :=
set.ext (take x, iff.intro
(assume H, obtain y [(Hy₁ : y ∈ X) (Hy₂ : -y = x)], from H,
show -x ∈ X, by rewrite [-Hy₂, neg_neg]; exact Hy₁)
(assume H : -x ∈ X, exists.intro (-x) (and.intro H !neg_neg)))
proposition sup_neg {X : set } (nonempty_X : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → b ≤ x) :
sup {x | -x ∈ X} = - inf X :=
let negX := {x | -x ∈ X} in
have nonempty_negX : ∃ x, x ∈ negX, from
obtain x Hx, from nonempty_X,
have -(-x) ∈ X,
by rewrite neg_neg; apply Hx,
exists.intro (-x) this,
have H₁ : ∀ x, x ∈ negX → x ≤ - inf X, from
take x,
assume H,
have inf X ≤ -x,
from inf_le H Hb,
show x ≤ - inf X,
from le_neg_of_le_neg this,
have H₂ : ∀ x, x ∈ X → -sup negX ≤ x, from
take x,
assume H,
have -(-x) ∈ X, by rewrite neg_neg; apply H,
have -x ≤ sup negX, from le_sup this H₁,
show -sup negX ≤ x,
from !neg_le_of_neg_le this,
eq_of_le_of_ge
(show sup negX ≤ - inf X,
from sup_le nonempty_negX H₁)
(show -inf X ≤ sup negX,
from !neg_le_of_neg_le (le_inf nonempty_X H₂))
proposition inf_neg {X : set } (nonempty_X : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → x ≤ b) :
inf {x | -x ∈ X} = - sup X :=
let negX := {x | -x ∈ X} in
have nonempty_negX : ∃ x, x ∈ negX, from
obtain x Hx, from nonempty_X,
have -(-x) ∈ X,
by rewrite neg_neg; apply Hx,
exists.intro (-x) this,
have Hb' : ∀ x, x ∈ negX → -b ≤ x,
from take x, assume H, !neg_le_of_neg_le (Hb _ H),
have HX : X = {x | -x ∈ negX},
from set.ext (take x, by rewrite [↑set_of, ↑mem, +neg_neg]),
show inf {x | -x ∈ X} = - sup X,
using HX Hb' nonempty_negX, by rewrite [HX at {2}, sup_neg nonempty_negX Hb', neg_neg]
end
end real
/- the reals form a complete metric space -/
namespace analysis
theorem dist_eq_abs (x y : real) : dist x y = abs (x - y) := rfl
proposition converges_to_seq_real_intro {X : } {y : }
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) < ε) :
(X ⟶ y in ) := H
proposition converges_to_seq_real_elim {X : } {y : } (H : X ⟶ y in ) :
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) < ε := H
proposition converges_to_seq_real_intro' {X : } {y : }
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) ≤ ε) :
converges_to_seq X y :=
converges_to_seq.intro H
open pnat subtype
local postfix ⁻¹ := pnat.inv
private definition pnat.succ (n : ) : + := tag (succ n) !succ_pos
private definition r_seq_of (X : ) : r_seq := λ n, X (elt_of n)
private lemma rate_of_cauchy_aux {X : } (H : cauchy X) :
∀ k : +, ∃ N : +, ∀ m n : +,
m ≥ N → n ≥ N → abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹ :=
take k : +,
have H1 : (k⁻¹ >[rat] (rat.of_num 0)), from !pnat.inv_pos,
have H2 : (of_rat k⁻¹ > of_rat (rat.of_num 0)), from !of_rat_lt_of_rat_of_lt H1,
obtain (N : ) (H : ∀ m n, m ≥ N → n ≥ N → abs (X m - X n) < of_rat k⁻¹), from H _ H2,
exists.intro (pnat.succ N)
(take m n : +,
assume Hm : m ≥ (pnat.succ N),
assume Hn : n ≥ (pnat.succ N),
have Hm' : elt_of m ≥ N, begin apply le.trans, apply le_succ, apply Hm end,
have Hn' : elt_of n ≥ N, begin apply le.trans, apply le_succ, apply Hn end,
show abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹, from le_of_lt (H _ _ Hm' Hn'))
private definition rate_of_cauchy {X : } (H : cauchy X) (k : +) : + :=
some (rate_of_cauchy_aux H k)
private lemma cauchy_with_rate_of_cauchy {X : } (H : cauchy X) :
cauchy_with_rate (r_seq_of X) (rate_of_cauchy H) :=
take k : +,
some_spec (rate_of_cauchy_aux H k)
private lemma converges_to_with_rate_of_cauchy {X : } (H : cauchy X) :
∃ l Nb, converges_to_with_rate (r_seq_of X) l Nb :=
begin
apply exists.intro,
apply exists.intro,
apply converges_to_with_rate_of_cauchy_with_rate,
exact cauchy_with_rate_of_cauchy H
end
theorem converges_seq_of_cauchy {X : } (H : cauchy X) : converges_seq X :=
obtain l Nb (conv : converges_to_with_rate (r_seq_of X) l Nb),
from converges_to_with_rate_of_cauchy H,
exists.intro l
(take ε : ,
suppose ε > 0,
obtain (k' : ) (Hn : 1 / succ k' < ε), from archimedean_small `ε > 0`,
let k : + := tag (succ k') !succ_pos,
N : + := Nb k in
have Hk : real.of_rat k⁻¹ < ε,
by rewrite [↑pnat.inv, of_rat_divide]; exact Hn,
exists.intro (elt_of N)
(take n : ,
assume Hn : n ≥ elt_of N,
let n' : + := tag n (nat.lt_of_lt_of_le (has_property N) Hn) in
have abs (X n - l) ≤ real.of_rat k⁻¹, by apply conv k n' Hn,
show abs (X n - l) < ε, from lt_of_le_of_lt this Hk))
end analysis
definition complete_metric_space_real [reducible] [trans_instance] :
complete_metric_space :=
⦃complete_metric_space, metric_space_real,
complete := @analysis.converges_seq_of_cauchy
/- the real numbers can be viewed as a banach space -/
definition real_vector_space_real : real_vector_space :=
⦃ real_vector_space, real.discrete_linear_ordered_field,
smul := mul,
smul_left_distrib := left_distrib,
smul_right_distrib := right_distrib,
mul_smul := mul.assoc,
one_smul := one_mul
definition banach_space_real [trans_instance] [reducible] : banach_space :=
⦃ banach_space, real_vector_space_real,
norm := abs,
norm_zero := abs_zero,
eq_zero_of_norm_eq_zero := λ a H, eq_zero_of_abs_eq_zero H,
norm_triangle := abs_add_le_abs_add_abs,
norm_smul := abs_mul,
complete := λ X H, analysis.complete H
/- limits under pointwise operations -/
section limit_operations
variables {X Y : }
variables {x y : }
proposition mul_left_converges_to_seq (c : ) (HX : X ⟶ x in ) :
(λ n, c * X n) ⟶ c * x in :=
smul_converges_to_seq c HX
proposition mul_right_converges_to_seq (c : ) (HX : X ⟶ x in ) :
(λ n, X n * c) ⟶ x * c in :=
have (λ n, X n * c) = (λ n, c * X n), from funext (take x, !mul.comm),
by+ rewrite [this, mul.comm]; apply mul_left_converges_to_seq c HX
theorem converges_to_seq_squeeze (HX : X ⟶ x in ) (HY : Y ⟶ x in ) {Z : } (HZX : ∀ n, X n ≤ Z n)
(HZY : ∀ n, Z n ≤ Y n) : Z ⟶ x in :=
begin
intros ε Hε,
have Hε4 : ε / 4 > 0, from div_pos_of_pos_of_pos Hε four_pos,
cases HX Hε4 with N1 HN1,
cases HY Hε4 with N2 HN2,
existsi max N1 N2,
intro n Hn,
have HXY : abs (Y n - X n) < ε / 2, begin
apply lt_of_le_of_lt,
apply abs_sub_le _ x,
have Hε24 : ε / 2 = ε / 4 + ε / 4, from eq.symm !add_quarters,
rewrite Hε24,
apply add_lt_add,
apply HN2,
apply ge.trans Hn !le_max_right,
rewrite abs_sub,
apply HN1,
apply ge.trans Hn !le_max_left
end,
have HZX : abs (Z n - X n) < ε / 2, begin
have HZXnp : Z n - X n ≥ 0, from sub_nonneg_of_le !HZX,
have HXYnp : Y n - X n ≥ 0, from sub_nonneg_of_le (le.trans !HZX !HZY),
rewrite [abs_of_nonneg HZXnp, abs_of_nonneg HXYnp at HXY],
note Hgt := lt_add_of_sub_lt_right HXY,
have Hlt : Z n < ε / 2 + X n, from calc
Z n ≤ Y n : HZY
... < ε / 2 + X n : Hgt,
apply sub_lt_right_of_lt_add Hlt
end,
have H : abs (Z n - x) < ε, begin
apply lt_of_le_of_lt,
apply abs_sub_le _ (X n),
apply lt.trans,
apply add_lt_add,
apply HZX,
apply HN1,
apply ge.trans Hn !le_max_left,
apply div_two_add_div_four_lt Hε
end,
exact H
end
proposition converges_to_seq_of_abs_sub_converges_to_seq (Habs : (λ n, abs (X n - x)) ⟶ 0 in ) :
X ⟶ x in :=
begin
intros ε Hε,
cases Habs Hε with N HN,
existsi N,
intro n Hn,
have Hn' : abs (abs (X n - x) - 0) < ε, from HN Hn,
rewrite [sub_zero at Hn', abs_abs at Hn'],
exact Hn'
end
proposition abs_sub_converges_to_seq_of_converges_to_seq (HX : X ⟶ x in ) :
(λ n, abs (X n - x)) ⟶ 0 in :=
begin
intros ε Hε,
cases HX Hε with N HN,
existsi N,
intro n Hn,
have Hn' : abs (abs (X n - x) - 0) < ε, by rewrite [sub_zero, abs_abs]; apply HN Hn,
exact Hn'
end
proposition mul_converges_to_seq (HX : X ⟶ x in ) (HY : Y ⟶ y in ) :
(λ n, X n * Y n) ⟶ x * y in :=
have Hbd : ∃ K : , ∀ n : , abs (X n) ≤ K, begin
cases bounded_of_converges_seq HX with K HK,
existsi K + abs x,
intro n,
note Habs := le.trans (abs_abs_sub_abs_le_abs_sub (X n) x) !HK,
apply le_add_of_sub_right_le,
apply le.trans,
apply le_abs_self,
assumption
end,
obtain K HK, from Hbd,
have Habsle [visible] : ∀ n, abs (X n * Y n - x * y) ≤ K * abs (Y n - y) + abs y * abs (X n - x), begin
intro,
have Heq : X n * Y n - x * y = (X n * Y n - X n * y) + (X n * y - x * y), by
rewrite [-sub_add_cancel (X n * Y n) (X n * y) at {1}, sub_eq_add_neg, *add.assoc],
apply le.trans,
rewrite Heq,
apply abs_add_le_abs_add_abs,
apply add_le_add,
rewrite [-mul_sub_left_distrib, abs_mul],
apply mul_le_mul_of_nonneg_right,
apply HK,
apply abs_nonneg,
rewrite [-mul_sub_right_distrib, abs_mul, mul.comm],
apply le.refl
end,
have Hdifflim [visible] : (λ n, abs (X n * Y n - x * y)) ⟶ 0 in , begin
apply converges_to_seq_squeeze,
rotate 2,
intro, apply abs_nonneg,
apply Habsle,
apply converges_to_seq_constant,
rewrite -{0}zero_add,
apply add_converges_to_seq,
krewrite -(mul_zero K),
apply mul_left_converges_to_seq,
apply abs_sub_converges_to_seq_of_converges_to_seq,
exact HY,
krewrite -(mul_zero (abs y)),
apply mul_left_converges_to_seq,
apply abs_sub_converges_to_seq_of_converges_to_seq,
exact HX
end,
converges_to_seq_of_abs_sub_converges_to_seq Hdifflim
-- TODO: converges_to_seq_div, converges_to_seq_mul_left_iff, etc.
proposition abs_converges_to_seq_zero (HX : X ⟶ 0 in ) : (λ n, abs (X n)) ⟶ 0 in :=
norm_converges_to_seq_zero HX
proposition converges_to_seq_zero_of_abs_converges_to_seq_zero (HX : (λ n, abs (X n)) ⟶ 0 in ) :
X ⟶ 0 in :=
converges_to_seq_zero_of_norm_converges_to_seq_zero HX
proposition abs_converges_to_seq_zero_iff (X : ) :
((λ n, abs (X n)) ⟶ 0 in ) ↔ (X ⟶ 0 in ) :=
iff.intro converges_to_seq_zero_of_abs_converges_to_seq_zero abs_converges_to_seq_zero
-- TODO: products of two sequences, converges_seq, limit_seq
end limit_operations
/- properties of converges_to_at -/
section limit_operations_continuous
variables {f g : }
variables {a b x y : }
theorem mul_converges_to_at (Hf : f ⟶ a at x) (Hg : g ⟶ b at x) : (λ z, f z * g z) ⟶ a * b at x :=
begin
apply converges_to_at_of_all_conv_seqs,
intro X HX,
apply mul_converges_to_seq,
note Hfc := all_conv_seqs_of_converges_to_at Hf,
apply Hfc _ HX,
note Hgb := all_conv_seqs_of_converges_to_at Hg,
apply Hgb _ HX
end
end limit_operations_continuous
/- monotone sequences -/
section monotone_sequences
open real set
variable {X : }
definition nondecreasing (X : ) : Prop := ∀ ⦃i j⦄, i ≤ j → X i ≤ X j
proposition nondecreasing_of_forall_le_succ (H : ∀ i, X i ≤ X (succ i)) : nondecreasing X :=
take i j, suppose i ≤ j,
have ∀ n, X i ≤ X (i + n), from
take n, nat.induction_on n
(by rewrite nat.add_zero; apply le.refl)
(take n, assume ih, le.trans ih (H (i + n))),
have X i ≤ X (i + (j - i)), from !this,
by+ rewrite [add_sub_of_le `i ≤ j` at this]; exact this
proposition converges_to_seq_sup_of_nondecreasing (nondecX : nondecreasing X) {b : }
(Hb : ∀ i, X i ≤ b) : X ⟶ sup (X ' univ) in :=
let sX := sup (X ' univ) in
have Xle : ∀ i, X i ≤ sX, from
take i,
have ∀ x, x ∈ X ' univ → x ≤ b, from
(take x, assume H,
obtain i [H' (Hi : X i = x)], from H,
by rewrite -Hi; exact Hb i),
show X i ≤ sX, from le_sup (mem_image_of_mem X !mem_univ) this,
have exX : ∃ x, x ∈ X ' univ,
from exists.intro (X 0) (mem_image_of_mem X !mem_univ),
take ε, assume epos : ε > 0,
have sX - ε < sX, from !sub_lt_of_pos epos,
obtain x' [(H₁x' : x' ∈ X ' univ) (H₂x' : sX - ε < x')],
from exists_mem_and_lt_of_lt_sup exX this,
obtain i [H' (Hi : X i = x')], from H₁x',
have Hi' : ∀ j, j ≥ i → sX - ε < X j, from
take j, assume Hj, lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
exists.intro i
(take j, assume Hj : j ≥ i,
have X j - sX ≤ 0, from sub_nonpos_of_le (Xle j),
have eq₁ : abs (X j - sX) = sX - X j, using this, by rewrite [abs_of_nonpos this, neg_sub],
have sX - ε < X j, from lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
have sX < X j + ε, from lt_add_of_sub_lt_right this,
have sX - X j < ε, from sub_lt_left_of_lt_add this,
show (abs (X j - sX)) < ε, using eq₁ this, by rewrite eq₁; exact this)
definition nonincreasing (X : ) : Prop := ∀ ⦃i j⦄, i ≤ j → X i ≥ X j
proposition nodecreasing_of_nonincreasing_neg (nonincX : nonincreasing (λ n, - X n)) :
nondecreasing (λ n, X n) :=
take i j, suppose i ≤ j,
show X i ≤ X j, from le_of_neg_le_neg (nonincX this)
proposition noincreasing_neg_of_nondecreasing (nondecX : nondecreasing X) :
nonincreasing (λ n, - X n) :=
take i j, suppose i ≤ j,
show - X i ≥ - X j, from neg_le_neg (nondecX this)
proposition nonincreasing_neg_iff (X : ) : nonincreasing (λ n, - X n) ↔ nondecreasing X :=
iff.intro nodecreasing_of_nonincreasing_neg noincreasing_neg_of_nondecreasing
proposition nonincreasing_of_nondecreasing_neg (nondecX : nondecreasing (λ n, - X n)) :
nonincreasing (λ n, X n) :=
take i j, suppose i ≤ j,
show X i ≥ X j, from le_of_neg_le_neg (nondecX this)
proposition nodecreasing_neg_of_nonincreasing (nonincX : nonincreasing X) :
nondecreasing (λ n, - X n) :=
take i j, suppose i ≤ j,
show - X i ≤ - X j, from neg_le_neg (nonincX this)
proposition nondecreasing_neg_iff (X : ) : nondecreasing (λ n, - X n) ↔ nonincreasing X :=
iff.intro nonincreasing_of_nondecreasing_neg nodecreasing_neg_of_nonincreasing
proposition nonincreasing_of_forall_succ_le (H : ∀ i, X (succ i) ≤ X i) : nonincreasing X :=
begin
rewrite -nondecreasing_neg_iff,
show nondecreasing (λ n : , - X n), from
nondecreasing_of_forall_le_succ (take i, neg_le_neg (H i))
end
proposition converges_to_seq_inf_of_nonincreasing (nonincX : nonincreasing X) {b : }
(Hb : ∀ i, b ≤ X i) : X ⟶ inf (X ' univ) in :=
have H₁ : ∃ x, x ∈ X ' univ, from exists.intro (X 0) (mem_image_of_mem X !mem_univ),
have H₂ : ∀ x, x ∈ X ' univ → b ≤ x, from
(take x, assume H,
obtain i [Hi₁ (Hi₂ : X i = x)], from H,
show b ≤ x, by rewrite -Hi₂; apply Hb i),
have H₃ : {x : | -x ∈ X ' univ} = {x : | x ∈ (λ n, -X n) ' univ}, from calc
{x : | -x ∈ X ' univ} = (λ y, -y) ' (X ' univ) : by rewrite image_neg_eq
... = {x : | x ∈ (λ n, -X n) ' univ} : image_compose,
have H₄ : ∀ i, - X i ≤ - b, from take i, neg_le_neg (Hb i),
begin+
-- need krewrite here
krewrite [-neg_converges_to_seq_iff, -sup_neg H₁ H₂, H₃, -nondecreasing_neg_iff at nonincX],
apply converges_to_seq_sup_of_nondecreasing nonincX H₄
end
end monotone_sequences
/- x^n converges to 0 if abs x < 1 -/
section xn
open nat set
theorem pow_converges_to_seq_zero {x : } (H : abs x < 1) :
(λ n, x^n) ⟶ 0 in :=
suffices H' : (λ n, (abs x)^n) ⟶ 0 in , from
have (λ n, (abs x)^n) = (λ n, abs (x^n)), from funext (take n, eq.symm !abs_pow),
using this,
by rewrite this at H'; exact converges_to_seq_zero_of_abs_converges_to_seq_zero H',
let aX := (λ n, (abs x)^n),
iaX := real.inf (aX ' univ),
asX := (λ n, (abs x)^(succ n)) in
have noninc_aX : nonincreasing aX, from
nonincreasing_of_forall_succ_le
(take i,
assert (abs x) * (abs x)^i ≤ 1 * (abs x)^i,
from mul_le_mul_of_nonneg_right (le_of_lt H) (!pow_nonneg_of_nonneg !abs_nonneg),
assert (abs x) * (abs x)^i ≤ (abs x)^i, by krewrite one_mul at this; exact this,
show (abs x) ^ (succ i) ≤ (abs x)^i, by rewrite pow_succ; apply this),
have bdd_aX : ∀ i, 0 ≤ aX i, from take i, !pow_nonneg_of_nonneg !abs_nonneg,
assert aXconv : aX ⟶ iaX in , proof converges_to_seq_inf_of_nonincreasing noninc_aX bdd_aX qed,
have asXconv : asX ⟶ iaX in , from converges_to_seq_offset_succ aXconv,
have asXconv' : asX ⟶ (abs x) * iaX in , from mul_left_converges_to_seq (abs x) aXconv,
have iaX = (abs x) * iaX, from converges_to_seq_unique asXconv asXconv',
assert iaX = 0, from eq_zero_of_mul_eq_self_left (ne_of_lt H) (eq.symm this),
show aX ⟶ 0 in , begin rewrite -this, exact aXconv end --from this ▸ aXconv
end xn
/- continuity on the reals -/
section continuous
theorem continuous_real_elim {f : } (H : continuous f) :
∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε :=
take x, continuous_at_elim (H x)
theorem continuous_real_intro {f : }
(H : ∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε) :
continuous f :=
take x, continuous_at_intro (H x)
theorem pos_on_nbhd_of_cts_of_pos {f : } (Hf : continuous f) {b : } (Hb : f b > 0) :
∃ δ : , δ > 0 ∧ ∀ y, abs (y - b) < δ → f y > 0 :=
begin
let Hcont := continuous_real_elim Hf b Hb,
cases Hcont with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro y Hy,
let Hy' := and.right Hδ y Hy,
note Hlt := sub_lt_of_abs_sub_lt_left Hy',
rewrite sub_self at Hlt,
assumption
end
theorem neg_on_nbhd_of_cts_of_neg {f : } (Hf : continuous f) {b : } (Hb : f b < 0) :
∃ δ : , δ > 0 ∧ ∀ y, abs (y - b) < δ → f y < 0 :=
begin
let Hcont := continuous_real_elim Hf b (neg_pos_of_neg Hb),
cases Hcont with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro y Hy,
let Hy' := and.right Hδ y Hy,
let Hlt := sub_lt_of_abs_sub_lt_right Hy',
note Hlt' := lt_add_of_sub_lt_left Hlt,
rewrite [add.comm at Hlt', -sub_eq_add_neg at Hlt', sub_self at Hlt'],
assumption
end
theorem continuous_neg_of_continuous {f : } (Hcon : continuous f) : continuous (λ x, - f x) :=
begin
apply continuous_real_intro,
intros x ε Hε,
cases continuous_real_elim Hcon x Hε with δ Hδ,
cases Hδ with Hδ₁ Hδ₂,
existsi δ,
split,
assumption,
intros x' Hx',
let HD := Hδ₂ x' Hx',
rewrite [-abs_neg, neg_neg_sub_neg],
exact HD
end
theorem continuous_offset_of_continuous {f : } (Hcon : continuous f) (a : ) :
continuous (λ x, (f x) + a) :=
begin
apply continuous_real_intro,
intros x ε Hε,
cases continuous_real_elim Hcon x Hε with δ Hδ,
cases Hδ with Hδ₁ Hδ₂,
existsi δ,
split,
assumption,
intros x' Hx',
rewrite [add_sub_comm, sub_self, add_zero],
apply Hδ₂,
assumption
end
theorem continuous_mul_of_continuous {f g : } (Hconf : continuous f) (Hcong : continuous g) :
continuous (λ x, f x * g x) :=
begin
intro x,
apply continuous_at_of_converges_to_at,
apply mul_converges_to_at,
all_goals apply converges_to_at_of_continuous_at,
apply Hconf,
apply Hcong
end
end continuous